
Preprints del XIII Congresso NazionaleAssociazione Italiana di Meccanica Teorica ed Applicata, AIMETA'97Siena, Italia. 29 Settembre { 3 Ottobre, 1997GEOMETRIC CONTROL TECHNIQUES FORMECHANICAL SYSTEMSD. PRATTICHIZZO,y P. MERCORELLI,y A. BICCHI,z A. VICINOyyDipartimento di Ingegneria Informatica, Universit�a di Sienavia Roma, 56, 53100 Siena, ItaliazDipartimento di Sistemi Elettrici e Automazione, Universit�a di Pisavia Diotisalvi, 2, 56100 Pisa, ItaliaABSTRACTThe aim of the paper consists in showing the e�ectiveness of geometric control tech-niques when used to solve several control problems occurring in mechanical applications.The problems of noninteracting control of robotic manipulation systems and disturbancerejection on vehicles with active suspensions are investigated.SOMMARIOLe tecniche proprie dell'approccio geometrico al controllo dei sistemi dinamici sono imp-iegate per la soluzione di alcuni problemi legati al controllo dei sistemi meccanici quali ilcontrollo noninteragente dei sistemi di manipolazione robotica e la reiezione dei disturbinei veicoli con sospensioni attive.1 INTRODUCTIONRecently, the geometric approach to the dynamic system and control theory has achievedrelevant results which made this approach a powerful tool for the analysis and synthesisof mechanisms with linear and nonlinear dynamics [1, 10, 2].The class of mechanisms, the paper deals with, is enough general [3] to include bothsimple robotic end{e�ectors as the parallel grippers, and more complex devices as serialkinematic chains which may cooperate to manipulate a given object. The class of generalmanipulation systems is characterized by the following properties:1. one or more single kinematic chains, consisting of one or more rigid links joined byrotoidal or prismatic joints, are allowed;2. contacts with the external environment on one or more links of the mechanical struc-tures are allowed;3. some of the joints may not be actuated.Figure 1 reports some examples of general manipulation systems.The task of manipulating parts in robotics can be decomposed in two fundamentalsub-tasks. The �rst one is the control of internal forces or grasping action: the mechanical1



Figure 1: Examples of general manipulation systems.device must guarantee a stable grasp of the objects in spite of external disturbing forcesand/or moments. The second sub{task is the control of the object dynamics: if, forinstance, the manipulated objects is a cutting tool, the grasping mechanisms must controlthe tool trajectory and its cutting force, i.e. the tool dynamics. Notice that, in both sub{tasks, the control of the contact forces between the mechanism and the manipulated objectplay a fundamental role.In [5] the authors showed that the control of the object grasp and of its motion aretasks which result to be inherently coupled. The force/motion decoupling control of generalmanipulation systems is studied in the �rst part of the paper. It should be remarked thatthe noninteraction requirement is mandatory in robotic assisted surgery [4].The second control problem, here investigated, is the regulation of the chassis posturein a vehicle equipped with active suspensions. The related control topic corresponds tothe problem of localizing unaccessible disturbances [9].The whole paper is aimed at showing how geometric control tools can be systemati-cally used to obtain the noninteraction and disturbance localization properties in roboticmanipulation and vehicle with active suspensions, respectively.2 MANIPULATION SYSTEMS: NONINTERACTIONThe linearized model of the dynamics of a general manipulation system is derived in [3, 4].Some of those results are here reported for the reader's convenience. Denote by q 2 IRqthe vector of joint positions, � 2 IRq the vector of joint actuator torques and u2 IRdthe vector locally describing the position and the orientation of a frame attached to theexternal environment (manipulated object).The force interaction ti at the i{th contact is taken into account by using a lumped{parameter (Ki;Bi) model of visco{elastic phenomena. According to this model, the vectort, obtained by grouping all contact vectors, ist = K(hc�o c) +B(h _c�o _c) (1)where hc and oc describe the postures of contact frames where the contact spring anddamper are anchored. Matrices K and B are symmetric and positive de�nite and theirdimension depend on the particular model used to describe the contact interaction, [8].The kinematic description of the manipulation system is described by the Jacobian Jand by the grasp matrix G: the linear maps relating the velocities of contact points (on2



the manipulator and the object) with the joint and object velocities _q and _u (h _c = J _q,o _c = GT _u).The nonlinear dynamics of the manipulation mechanism and of the object, coupledby the contact force equation (1) are linearly approximated in the neighbourhood of anequilibrium point by _x = Ax+B���; (2)where state and input vectors are de�ned as the departures from the reference equilibrium:x = h(q� qo)T (u� uo)T _qT _uT iT ;and A = " 0 ILk Lb # ; B� 26664 00M�1h0 37775 : (3)Assuming that local variations of the Jacobian, grasp matrix and gravity e�ects arenegligible, simple expressions are obtained for blocks Lk and Lb: Lk = �M�1Pk, andLb = �M�1Pb where M = diag(Mh;Mo) is the inertia matrix of the system,Pk = hJ �GT iT K hJ �GT i and Pb = hJ �GT iT B hJ �GT i :2.1 FORCE/MOTION NONINTERACTIONIn robotic manipulation the controlled outputs are typically the internal or grasping forceswhich belong to the null space of the grasp matrix G and the rigid{body object kinemat-ics deeply discussed in [3]. A special subspace of internal forces and of the rigid{bodyobject motions are now characterized through output matrices of the linearized dynam-ics of manipulation mechanisms: the reachable internal contact forces ti, de�ned as theprojection of the force vector t onto the null space of G,ti = Etix = n(QTQ)�1QT [Q 0 Q 0]ox; Q = (I�KGT (GKGT )�1G)KJ (4)and the rigid{body object motions uc de�ned as the projection of the object displacementu onto the column space of a matrix �uc (satisfying J�qc = GT�uc):uc = Eucx; Euc = (�Tuc�)�1�Tuc [0 I 0 0] : (5)The following decoupling theorem has been proved in a geometric framework [5]. Itstates that a noninteracting controller exists such that internal forces ti can be controlledwithout a�ecting the object motions uc and vice versa.Theorem 1 (Noninteraction) Consider the linearized manipulation system of Sec-tion 2. If ker(GT ) = f0g, there exists a stabilizing state{feedback control law, � = Fx+� �and an input partition � � = Utiuti +Uucuuc which decouples reachable internal forces tiand rigid{body object motions uc.Theorem 1 states that a state{feedback control law and a joint torques partition ex-ists such that, for zero initial conditions, each input only a�ects the relative output. The3



a) b) c) d)Figure 2: (a) Robotic assisted surgery; (b) Lumped parameter model; (c) Typical internalforce control; (d) Nonintercting control.geometric concept from which the previous result develops is the S{constrained controlla-bility. It consists of those state space vectors reachable through trajectories entirely lyingin the constraining subspace S.The importance of the noninteracting control law control is highlighted by the fol-lowing example. Consider the manipulation system of �g.2{a and model the complaintcontacts with visco{elastic lumped parameters as depicted in �g.2{b. A control actionaimed to increase the grasping force, but which does not takes into account the non-interaction, squeezes the manipulated object but gives rise to undesired and dangeroustransient motion of the object (�g 2{c). On the contrary the noninterating control sug-gested in this paper completely decouples the control of internal forces from the objectdynamics as depicted in (�g 2{d).3 ACTIVE SUSPENSIONS: DISTURBANCE LOCALIZATIONThe second part of the paper presents an application of the geometric control theory to theproblem of localizing disturbances of a vehicle with active suspensions for the regulationof the chassis posture. It will be shown that the regulated variables, i.e. the roll andpitch angles and the chassis heights, can be decoupled from the external disturbances bymeans of a state feedback control law.The mathematical model of vertical dynamics of road vehicles is derived for the me-chanical structure reported in �gure 3. The vehicle sprung mass is linked with the axesby means of four passive suspensions and actuators. An independent control action uj(j = 1; : : : ; 4) is exerted at each corner of the vehicle.The section focuses on the regulation of the chassis posture in spite of disturbancesdj transmitted through the suspensions (ride heights regulation, [9]). Thus the controlledoutput vector y = (�r; �p; z)T : (6)consists of the roll, pitch angles and of the vehicle height, cf. �g. 3.The vertical dynamics is linearized around an equilibrium con�guration and can be
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Figure 3: Mechanical model of a vehicle with active suspensions, front and side view.�r; �p; �ai; z and zi are roll, pitch and i{th axis angles, chassis height and i{th axis height,respectively.described in the state space as ( _x = Ax+Bu +Dd;y = Cx; (7)where the 4{dimensional input and disturbance vector are u = (u1 u2 u3 u4) and d =(d1 d2 d3 d4), and the 14{dimensional state vector is x = (xTr xTv )T being (cf. �g. 3),xr = (�r �a1 �a2 _�r _�a1 _�a2)T ; xv = (�p z z1 z2 _�p _z _z1 _z2)T :For the sake of brevity matrices of dynamics model have not been reported. A deepanalysis of these matrices can be found in [7].3.1 DISTURBANCE LOCALIZATIONOn the base of previous formulation, the ride heights regulation can be rigorously statedas a problem of unaccessible disturbance localization. The problem consists in �nding astate feedback u = Fx for the dynamic system (7), such that, starting at zero state, theregulated output y(t) is identically zero for all the admissible disturbances d(t).The problem is attacked by using the classical tools of the geometric control theory.It is well known that the unaccessible disturbance localization problem has a solution ifand only if there exists a matrix F such that min I (A+BF;D), the minimal (A+BF){invariant subspace containing the column space of the disturbance matrix D, is includedin the nullspace of the regulated output matrix, ker(C). Since this condition depends onthe choice of F, it lacks convenience and an equivalent structural condition [1] is preferredto prove the following theorem.Theorem 2 (Disturbance localization.) For the dynamic system (7) of a vehicle withactive suspensions, there always exists a stabilizing state feedback gain F which localizesdisturbances d in the nullspace of the regulated output y = (�r; �p; z).5
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