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Research

Persistent organic chemicals such as poly-
chlorinated biphenyls (PCBs) and chlorinated 
dibenzodioxins and dibenzofurans may cause 
human health effects as a result of exposure that 
occurred years before effects manifest (Cohn 
et al. 2007). To reconstruct past exposures 
and relate exposure and body concentrations, 
pharmaco kinetic (PK) models are increas-
ingly used (Karmaus et al. 2004; Redding 
et al. 2008; Verner et al. 2008, 2009). The 
accuracy of reconstructed exposures or body 
concentrations of these chemicals depends 
on the availability and quality of estimates of 
the elimi nation half-life, which describes the 
removal of the chemical from the body by 
metabolic and nonmetabolic pathways.

Elimination kinetics in humans have 
been estimated from two major categories 
of biomonitoring data (Table 1): sequential 
meas urements in the same individual, referred 
to as longitudinal data (LD); and population 
biomonitoring data from many individuals at 
one point in time, called cross-sectional data 
(CSD). Most elimination half-lives reported in 
the literature are estimated from concentration 
declines in LD for particular individuals. This 
method assumes that ongoing exposure dur-
ing the declining phase is negligible (Phillips 
1989). However, for persistent chemicals with 
long elimination half-lives, study participants 

cannot be isolated from ongoing exposure 
during the decline phase of an experiment, 
for example, by fasting (Koch and Angerer 
2007). Shirai and Kissel (1996) recognized 
this confounding factor and introduced the 
term “apparent” elimination half-life, as 
opposed to “true” elimination half-life, to refer 
to experimentally observed elimination half-
lives that may be affected by ongoing expo-
sure. In addition, because of the long intervals 
(several years) required in LD-based studies to 
measure persistent chemicals, changes in body 
weight are an additional factor that influences 
concentrations over time (Grandjean et al. 
2008; Yakushiji et al. 1984). Thus, the defi-
nition of apparent elimination half-life that 
was used by Shirai and Kissel (1996) has been 
extended to include the combined effect of 
elimination, ongoing exposure, and changes in 
body composition (Milbrath et al. 2009).

However, apparent half-lives cannot be 
used to parameterize elimination in a PK 
model because they describe the observed 
decline in concentration under specific con-
ditions of ongoing exposure and changes in 
body size and composition. Apparent half-
lives that have been reported for persistent 
chemicals such as PCBs and poly chlorinated 
dibenzodioxins and dibenzofurans are there-
fore highly variable. Values for individual 

substances range from < 1 year to several 
decades, and even negative values have been 
reported (Matsumoto et al. 2009; Milbrath 
et al. 2009; Shirai and Kissel 1996). We use 
the term “intrinsic” half-life, rather than 
“true” half-life (Shirai and Kissel 1996), 
to unequivocally specify half-lives esti-
mated with methods that account for, and 
thereby eliminate the influence of, the effects 
of on going exposure and changes in body 
weight. Correspondingly, and in accordance 
with previous authors, we use “apparent half-
life” to refer to half-life estimates that directly 
reflect the observed change in concentration 
in one individual over time that is determined 
mainly by the aggregated effect of intrinsic 
elimination, ongoing exposure, and body 
weight changes, although additional factors 
such as smoking habits and parity may also 
have an influence.

Estimating intrinsic elimination half-lives 
of persistent chemicals therefore requires cor-
recting for effects other than intrinsic elimina-
tion (i.e., changes in body weight and ongoing 
exposure). A marked increase in body weight 
occurs during childhood and causes “growth 
dilution” of chemical concentrations in the 
body. Growth dilution has been accounted for 
in LD-based studies of children (Grandjean 
et al. 2008; Yakushiji et al. 1984). Accounting 
for ongoing exposure in LD-based studies 
requires exposure estimates for every indi-
vidual. In an LD-based study from the Faroe 
Islands, Grandjean et al. (2008) accounted for 
ongoing exposure by including the number of 
meals of whale meat consumed by each sub-
ject as a covariate. However, most LD-based 
studies do not account for ongoing exposure 
but instead use individuals from occupation-
ally or accidentally exposed cohorts (“incident 
cohorts”) who experienced high exposures for 
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Background: Most empirical estimates of human elimination kinetics for persistent chemicals 
reflect apparent elimination half-lives that represent the aggregated effect of intrinsic elimination, 
ongoing exposure, and changes in body weight. However, estimates of intrinsic elimination at back-
ground levels are required for risk assessments for the general population.

oBjective: To estimate intrinsic human elimination half-lives at background levels for nine poly-
chlorinated biphenyl (PCB) congeners, we used a novel approach based on population data.

Methods: We used a population pharmacokinetic model to interpret two sets of congener-specific 
cross-sectional age–concentration biomonitoring data of PCB concentrations measured in lipid and 
blood samples that were collected from 229 individuals in 1990 and 2003. Our method is novel 
because it exploits information about changes in concentration in the human population along two 
dimensions: age and calendar time.

results: Our approach extracted information about both elimination kinetics and exposure trends 
from biomonitoring data. The longest intrinsic human elimination half-lives estimated in this study 
are 15.5 years for PCB-170, 14.4 years for PCB-153, and 11.5 years for PCB-180. 

conclusions: Our results are further evidence that a maximum intrinsic elimination half-life 
for persistent chemicals such as PCBs exists and is approximately 10–15 years. A clear conceptual 
distinction between apparent and intrinsic half-lives is required to reduce the uncertainty in elimi-
nation half-lives of persistent chemicals. The method presented here estimates intrinsic elimination 
half-lives and the exposure trends of persistent pollutants using cross-sectional data available from a 
large and growing number of biomonitoring programs.

key words: elimination half-life, exposure analysis, PCB, persistent organic pollutants, pharma-
cokinetic model. Environ Health Perspect 119:225–231 (2011). doi:10.1289/ehp.1002211 [Online 
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a restricted time period so that background 
exposure could be considered negligible (Shirai 
and Kissel 1996). However, these estimates 
are not representative of the general popula-
tion because intrinsic elimination reflects the 
individual status of the patient and has been 
shown to be faster and partly driven by dif-
ferent elimination mechanisms at high con-
centrations, such as induced metabolism or 
increased elimination via skin and feces (Sorg 
et al. 2009). Because of confounding from 
ongoing exposure, estimation of elimination 
kinetics from cohorts at background concen-
tration has even been judged to be impossible 
(Lotti 2003; Yakushiji et al. 1984).

To avoid the difficulty of accounting 
for ongoing exposure in LD-based studies 
of cohorts at background levels, alternative 
approaches based on CSD have been pro-
posed (Table 1, rows 3–7). The simplest 
approach is based on one average body con-
centration derived from a set of CSD and 
relates this concentration to one average esti-
mate of dietary intake by using a PK model 
under the assumption of steady state (con-
stant intake, constant elimination; Table 1, 
row 3) (Geyer et al. 2004; Ogura 2004; Shirai 
and Kissel 1996). We recently demonstrated 
a more sophisticated method (Ritter et al. 
2009) that accounts for decreasing population 
exposure in a postban phase and uses multiple 
concentrations averaged over the population 
from several CSD collected at different times, 
which are referred to as cross-sectional trend 
data (CSTD; Table 1, row 4). Both of these 
CSD-based approaches use average CSD.

Cross-sectional studies usually also collect 
information about age and other variables to 
complement information about the body con-
centration of pollutants. A few studies have 
exploited the information in the cross-sectional 
age–concentration relationship to estimate 
intrinsic human elimination half-lives for PCBs, 
dioxins, and furans. These studies used one set 
of “age–concentration CSD” representing one 
specific year and detailed empirical knowledge 
about the historic exposure trend (Ogura 2004; 
Van der Molen et al. 2000; Table 1, row 5).

To our knowledge, no study exists that 
uses more than one set of empirical age– 
concentration CSD collected in different years 
to estimate intrinsic elimination half-lives. 
Such an approach uses information from con-
centration changes along two temporal dimen-
sions in combination: the age–concentration 
relationship at a given time within each set 
of CSD (Ogura 2004; Van der Molen et al. 
2000) and the cross-sectional trend as a func-
tion of calendar time (Ritter et al. 2009). Here 
we use two sets of age–concentration CSD 
and pursue three main goals: first, to provide 
estimates of intrinsic elimination half-lives 
from the human body at background expo-
sure levels for nine PCB congeners; second, 
to compare half-life estimates with literature 
data to discuss plausible ranges for intrinsic 
elimination half-lives compared with appar-
ent half-lives; and third, to evaluate the pos-
sibility to access information about historic 
exposure contained in the temporal evolution 
of the age–concentration relationship in cross-
 sectional population biomonitoring data.

Materials and Methods
Empirical data. We use two sets of congener-
specific cross-sectional biomonitoring data for 
PCBs. The first set consists of PCB concentra-
tion in 75 adipose tissue samples from Wales, 
United Kingdom, which were collected in 
1990–1991 (Duarte-Davidson et al. 1994). 
The age of the individuals who supplied the 
samples ranged from 14 to 79 years. The sec-
ond set consists of 154 human blood sam-
ples collected in 2003 at 13 locations in the 
United Kingdom (Thomas et al. 2006). The 
age of these individuals ranged from 22 to 
80 years. To reduce the influence of outliers, 
we aggregated the data in 10 age groups (in 
both data sets). Both studies reported results 
in terms of lipid-normalized concentrations. 
Lipid-normalized concentrations derived 
from blood and adipose tissue samples are 
directly comparable because the two lipid 
compartments are in equilibrium (Haddad 
et al. 2000; Patterson et al. 1988; Sorg et al. 
2009). Details about samples and analytical 
methods have been described elsewhere for 
both data sets (Duarte-Davidson et al. 1994; 
Thomas et al. 2006).

Congener-specific empirical daily intake 
data for the U.K. population were derived 
from total diet studies because dietary intake 
is the main source of PCB exposure for the 
general population [for detailed description 
and references, see Supplemental Material 
(doi:10.1289/ehp.1002211)].

Population PK model. We employed a 
population PK model that describes changes 
in body concentration of PCBs as a function 

Table 1. Types of human biomonitoring data used to estimate elimination kinetics of persistent chemicals.

Biomonitoring data type
Temporal dimensions of 
concentration changesa

Specific experimental 
 conditions

Empirical exposure data 
required to account for 

ongoing exposure Model used References
1. LD One temporal dimension 

(tbirth = constant = 
t – tage)

Incident cohorts: occupational, 
accidental, or experimental 
cohorts with initial levels 
above background

None, but only if 
concentrations strongly 
exceed background 
levelsb

Log-linear regression Brown et al. 1989; Bühler et al. 
1988; Chen et al. 1982; Masuda 
2001; Milbrath et al. 2009; Ryan 
et al. 1993; Wolff et al. 1992; 
Yakushiji et al. 1984

2. LD One temporal dimension 
(tbirth = constant = 
t – tage)

Cohorts at concentration 
reflecting ongoing 
(background) exposure

Exposure time-trend 
information for 
individuals

Log-linear regression Grandjean et al. 2008

3. Average or median 
value from a single 
CSD set

No temporal dimension Population or cohort 
biomonitoring studies

One average population- 
exposure value

Single-individual PK 
model at steady state

Shirai and Kissel 1996; Geyer 
et al. 2004; Ogura 2004

4. Multiple averages 

or median values of 
CSDc sets (i.e., CSTD)

One temporal dimension 
(tage = constant = 
t – tbirth)

Population or cohort 
biomonitoring studies

At least one exposure 
value if postban 
conditionsd apply

Population PK model, 
time resolved

Ritter et al. 2009

5. Single set of 
age–concentration 
CSD

One temporal dimension 
(t = constant = 
tbirth + tage)

Population or cohort 
biomonitoring studies

Time-trend information 
of population exposure

Population PK model, 
time resolved

Van der Molen et al. 2000; 
Ogura 2004

6. Multiple sets of 
age–concentration 
CSD

Two temporal dimensions 
(t = tbirth + tage)

Including empirical exposure 
data (i.e., using OFCSD_Int)

Time-trend information 
of population exposure

Population PK model, 
time resolved

Present study

7. Multiple sets of  
age–concentration 
CSD

Two temporal dimensions 
(t = tbirth + tage)

Excluding empirical exposure 
data (i.e., using OFCSD_Only)

None Population PK model, 
time resolved

Present study

aThe three time variables (t, tbirth, and tage) are related by t = tbirth + tage and therefore reflect only two temporal dimensions of concentration changes. bAt these high concentrations, 
intrinsic elimination half-lives are not representative for the general population. cRepresenting individuals of constant characteristic age (Ritter et al. 2009). dIndividuals included in 
CSTD have spent their lifetime in a postban phase. 
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of age and calendar time for multiple indi-
viduals representing different birth cohorts of 
the average population (Alcock et al. 2000; 
Pinsky and Lorber 1998). The model is a 
modified version of the multiindividual PK 
framework that was recently presented and 
analytically solved for a postban period (Ritter 
et al. 2009). The model implementation used 
here differs in two aspects from the earlier 
version: It is solved numerically and therefore 
is not restricted to postban conditions; and 
we implemented age-dependent growth of 
body mass and lipid mass, and age- and body-
weight-dependent dietary intake, including 
intake by breast-feeding.

Equation 1 defines the time course of 
PCB concentration in one representative indi-
vidual born at time tbirth [for a derivation of 
Equation 1 and additional information, see 
Supplemental Material (doi:10.1289/ehp. 
1002211) and Ritter et al. 2009]:

,
dt

dC t
k M t dt

dM t

C t M t
I t t

1
age

age
elim

lip age age

lip age

age
lip age

age birth constant

#

#

=- +

+
=

^

^

^
f

^
^

^

h

h

h
p

h
h

h , [1]

where tage (years) is the age of the individ-
ual, C(tage) (nanogram per gram lipid) is the 
lipid-normalized concentration of chemical 
in the body under the assumption that the 
chemical is present only in the lipid compart-
ment of the body, Mlip(tage) (kilograms lipid) 
is the mass of total body lipid as a function 
of age, kelim (years–1) is the first-order rate 
constant describing intrinsic elimination, and 
I(tage, tbirth = constant) (ng × year–1 × kg lipid 
× g lipid–1) is the exposure trend of the repre-
sentative average individual born at tbirth and 
is described in terms of age- and calendar-
time-dependent daily intake of chemical as

,I t t
U E M t I t P t

constantage birth

a bw age ref age# # # #=

=^

^ ^ ^

h

h h h, [2]

where U (days × year–1 × kg lipid × g lipid–1) 
is a unit conversion factor selected to describe 
quantities in commonly reported units; Ea 
(dimensionless) describes the net absorption 
in the gastrointestinal tract and is set at 0.9 
(Moser and McLachlan 2001); Mbw(tage) is 
the body weight as a function of age in kg; 

Iref (t) (ng × kg body weight–1 × day–1) is the 
reference daily intake of chemical for an adult 
and depends on the year of sampling, t, which 
can be expressed as t = tbirth + tage (Ritter et al. 
2009); and P(tage) (dimensionless) is a propor-
tionality factor adapting Iref(t) to younger ages 
according to results from total diet studies 
(Alcock et al. 2000).

Equation 2 describes the daily intake 
for individuals with tage > 6 months, assum-
ing that nursing ends at that age. The daily 
intake of chemical during nursing is deter-
mined from the concentration in the mother 
[see Supplemental Material (doi:10.1289/
ehp.1002211)]. The concentration of chemi-
cal in an individual at birth is set equal to the 
concentration in the mother.

Estimation procedure. To estimate elimina-
tion kinetics, we fit the model to measured 
data using a least-square optimization by 
adjusting three fitting parameters: adult refer-
ence intakes in the years 1970 and 2000, and 
kelim. This is achieved by minimizing the sum 
of squared residuals weighted (SSRW). SSRW 
is related to the coefficient of determination, 
R2, of a dataset with n empirical data points by

1 1R SSRW
y y

y f

i
i

n

i i
i

n

2
2

1

2

1= - = -

-
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=

=

^

^

h

h

/

/
, [3]

where yi is a value of the empirical data set, fi 
is the associated modeled value, and y– is the 
empirical sample mean. SSRW quantifies the 
differences between modeled and empirical 
values as the fraction of the sum of squares 
of residuals (numerator) to the total sum of 
squares of variability in the dataset (denomina-
tor). By minimizing SSRW, R2 is maximized.

For the CSD sets from 1990 and 2003, 
we define SSRWCSD_1990 and SSRWCSD_2003 
according to Equation 3. A third SSRW value, 
SSRWInt, quantifies the difference between 
modeled [i.e., Iref(t)] and empirical adult refer-
ence daily intake. Iref(t) was defined according 
to the following assumptions. The intake trend 
between the years 1970 and 2000 is exponen-
tially interpolated in accordance with moni-
toring data (Alcock et al. 2002; Bignert et al. 
1998). We assume peak intake occurred in 
1970. Before 1970, the shape of the modeled 

adult reference intake trend, Iref(t), is defined 
relative to intakes in 1970 and 2000 based 
on information taken from historic emission 
inventories (Breivik et al. 2002) and exposure 
reconstruction studies for PCBs. In particu-
lar, the intake in the year 1950 is set to the 
interpolated value of 1990, which is consistent 
with reconstructed PCB exposures from other 
studies (Alcock et al. 2000; Karmaus et al. 
2004). All three adjustable parameters, the 
adult reference intakes in 1970 and 2000 and 
the elimination rate constant, kelim, are varied 
independently until the value of an objective 
function reflecting the differences between 
modeled and empirical data is minimized. 
We use two different objective functions: the 
function OFCSD_Int reflects equally weighted 
contributions of each set of CSD and the 
empirical intake estimates,

OFCSD_Int = SSRWCSD_1990 + SSRWCSD_2003 

  + SSRWInt ; [4]

and the function OFCSD_Only fits the model by 
minimizing the difference between modeled 
and empirical age–concentration CSD only,

 OFCSD_Only = SSRWCSD_1990  
  + SSRWCSD_2003. [5]

The two different objective functions 
allow us to test whether it is possible to simul-
taneously extract information about both 
exposure and elimination from multiple age–
concentration CSD sets alone.

In summary, by minimizing the objective 
functions OFCSD_Only and OFCSD_Int in the 
course of two separated optimization runs, 
two different sets of results are generated. 
Each set consists of estimates of the intake in 
1970, the intake in 2000, and the rate con-
stant kelim. Intrinsic elimination half-life esti-
mates are calculated as ln(2)/kelim.

Results
Table 2 presents our results along with intrin-
sic half-life estimates from other studies for 
the same congeners. Estimates from model 
fits using OFCSD_Int are based on all avail-
able empirical information and are therefore 
judged as best estimates from this study. The 
shortest intrinsic elimination half-life derived 

Table 2. Estimates of human intrinsic elimination half-lives at background concentration levels (years) for nine PCB congeners.

Data type PCB-28 PCB-52 PCB-105 PCB-118 PCB-138 PCB-153 PCB-170 PCB-180 PCB-187 Reference
LD (children) 5.4 5.7 3.7 8.4 7.6 9.1 8 Grandjean et al. 2008
Single set of age–concentration CSD 

(adults)
5.2 6.3 Ogura 2004

Multiple sets of age–concentration CSD 
(adults; using OFCSD_Only)

5.6 2.6 4 9.5 8.4 13.8 7.4 5.5 7.8 Present study

Multiple sets of age–concentration CSD 
(adults; using OFCSD_Int)

5.5 2.6 5.2 9.3 10.8 14.4 15.5 11.5 10.5 Present study, 
recommended value

OFCSD_Only, objective function using information only from empirical cross-sectional data (CSD); OFCSD_Int, objective function using information from empirical CSD and empirical dietary 
intake data. Empty cells indicate that no value was reported for the congener.
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from OFCSD_Int is 2.6 years for PCB-52, and 
the longest is 15.5 years for PCB-170.

Estimates from OFCSD_Only differ by less 
than a factor of 1.4 from estimates derived 
from OFCSD_Int for all congeners except 
PCB-170 and PCB-180, for which results 
differ by a factor of 2.1 (Table 2). This good 
agreement of the results from the two objec-
tive functions demonstrates that, in this case, 
the information contained in multiple sets 
of age–concentration CSD alone (i.e., using 
OFCSD_Only) is sufficient to estimate intrinsic 

half-lives and to reconstruct historical exposure 
[Figure 1A; see also Supplemental Material, 
Figure 2 (doi:10.1289/ehp.1002211)].

Figure 1 graphically presents results of 
the optimization procedure for PCB-52 and 
PCB-153 using OFCSD_Only and illustrates 
how information about exposure and elimi-
nation kinetics is represented in the tempo-
ral evolution of the age–concentration CSD. 
Graphical results for OFCSD_Int are almost 
identical [see Supplemental Material, Figure 2 
(doi:10.1289/ehp.1002211)]. Figure 1A 

shows empirical and modeled estimates of the 
adult reference daily intake; Figure 1B pres-
ents the modeled concentration–time trends 
for PCB-52 and PCB-153 as two shaded 
areas. Each area represents the range of con-
centrations for one congener covered by indi-
viduals of all ages as a function of calendar 
time. Within the shaded area, six individual 
lifetime concentration profiles are highlighted 
in red as examples. Four cross sections by age 
are indicated as vertical lines in Figure 1B and 
plotted as a function of age in Figure 1C.

In the six individual concentration–lifetime 
trends shown in Figure 1B, the effect of growth 
dilution is visible as a drop in concentration 
after weaning at the age of 6 months. This drop 
is also reflected in Figure 1C in the modeled 
age–concentration CSD during childhood (i.e., 
for individuals < 15 years old), which is consis-
tent with empirical data (Toms et al. 2009). 
Correspondingly, adults are defined as repre-
sentative individuals > 15 years old because 
anthropometric data show that body growth 
becomes much slower around that age (Alcock 
et al. 2000).

In Figure 1B, the time intervals between 
the sampling year of each CSD set and the 
assumed peak year 1970 are labeled Δt1 to Δt4. 
These intervals mark the length of the postban 
periods of declining intake that precede the 
four CSD age–concentration profiles shown in 
Figure 1C. Time intervals of the same length 
are correspondingly labeled in Figure 1C, 
where they mark the “postban group,” that 
is, the fraction of the adult population that 
entered adulthood after 1970. For example, 
in the age–concentration CSD set from 2003, 
individuals in the postban group were born 
between 1955 and 1988, and the representa-
tive individual at the right end of the interval 
Δt3 (Figure 1C) is therefore 48 years old. All 
individuals > 48 years old in 2003 (i.e., born 
before 1955) were already adults in 1970 and 
therefore experienced high exposure during 
the preban period without the mitigating effect 
of strong growth dilution. As a consequence, 
for PCB-153, this preban part of the adult 
population forms a distinct group showing 
approximately the same concentration (to the 
right of the gray-shaded area in Figure 1C). 
This indicates that PCB-153 has a relatively 
long intrinsic elimination half-life that causes 
a “memory effect” of past exposures. No such 
memory effect is observed for PCB-52 because 
the decline in body concentration for this con-
gener is limited by the rate of decline in expo-
sure rather than the relatively short intrinsic 
elimination half-life. As a result, average con-
centrations are similar in all adults for PCB-52.

The PCB-153 concentrations increase 
with age for individuals in the postban group 
(shaded area in Figure 1C). This is because 
younger individuals in this group benefit 
more from the declining exposure trend in the 

Figure 1. Graphical representation of model fits for PCB-153 and PCB-52 from OFCSD_Only. (A) Modeled and 
empirical adult reference daily intakes. Modeled adult reference intakes were estimated solely by fitting 
age–concentration CSD as shown in C. (B) Complete concentration–time space covered by representative 
individuals of all ages, with examples of concentration–lifetime profiles from six birth cohorts for illustra-
tion. Modeled cross sections are indicated as vertical lines. (C) Body concentrations of individuals in the 
four cross sections in (B) are plotted as function of age for four different years.

1900 1920 1940 1960 1980 2000 2020

Δt1

Δt1

Δt2

Δt2

Δt3

Δt3

Δt4

Δt4

 

0 50 100

 t = 1983

0 50 100

 t = 1990

0 50 100

 t = 2003  t = 2015

0 50 100

1983

1990

2003

2015

PCB-52

PCB-153

 

PCB-153

 

1900 1920 1940 1960

Time, t = t birth + t age (years)

Time, t = t birth + t age (years)

1980 2000 2020

PCB-52

101

100

10–1

10–2

101

100

10–1

10–2

103

102

101

100

10–1

102

101

100

10–1

A
du

lt 
re

fe
re

nc
e 

da
ily

 in
ta

ke
I re

f(t)
 (n

g/
kg

 b
w

/d
ay

)
B

od
y 

co
nc

en
tr

at
io

n 
(n

g/
g 

lip
id

)
C(

t =
 t bi

rt
h +

 t
ag

e)
B

od
y 

co
nc

en
tr

at
io

n 
(n

g/
g 

lip
id

)
C

(t 
= 

t bi
rt

h +
 t

ag
e)

Empirical congener-specific CSD;
95th, 50th, and 5th percentiles
(Duarte-Davidson et al. 1994;
Thomas et al. 2006)

PCB-153: modeled CSD
as function of age

PCB-52: modeled CSD
as function of age

Empirical estimates
(see Supplemental Material)
Model-based estimates

Age, t age (years)

 

Concentration-time space 
covered by the population
PCB-153: cross-section (shown 
as function of age in panel C)
PCB-52: cross-section (shown 
as function of age in panel C)
Concentration-lifetime trends 
in selected individuals 



Elimination half-lives of persistent chemicals

Environmental Health Perspectives • volume 119 | number 2 | February 2011 229

postban period, leading to a smaller memory 
effect. As the postban period becomes longer 
(e.g., from Δt2 to Δt3; Figure 1C), a corre-
spondingly larger part of the adult population 
shows this increase in concentration with age 
for PCB-153. In contrast, for PCB-52, no 
increase of concentration with age is evident 
during the whole adult lifetime; that is, there 
is no memory effect.

Discussion
Intrinsic half-lives. Our results agree well with 
intrinsic elimination half-lives from two other 
studies (Table 2). Ogura (2004) used data from 
the general Japanese population and applied a 
method similar to ours. Ogura (2004) also 
accounted for changes in ongoing exposure 
derived from total diet studies and for age-
dependent changes in the size of the body’s 
lipid compartment by using a PK model. 
Unfortunately, Ogura (2004) investigated dif-
ferent congeners than in our study, except for 
PCB-105 and PCB-118. For these two con-
geners, Ogura’s estimated intrinsic elimination 
half-lives of 5.2 years (PCB-105) and 6.3 years 
(PCB-118) are very similar to our estimates of 
5.2 and 9.3 years. Grandjean et al. (2008) used 
a different approach and investigated intrinsic 
elimination using LD from a large cohort of 
children from 4 to 14 years old. They did not 
employ a PK model but used regression analy-
sis to account for changes in ongoing exposure 
(i.e., the consumption of whale meat) and for 
changes in body weight. They achieved this by 
including the body mass index and the num-
ber of monthly whale dinners as covariates in 
the regression. Grandjean et al. (2008) found 
no indication that intrinsic elimination half-
lives depend on age or are shorter in children 
than in adults after correcting for the effect 
of growth. A similar observation has been 
reported by Yakushiji et al. (1984). Table 2 
therefore shows that despite the fact that the 
half-life estimates are based on different data 
types (LD and CSD), represent cohorts of 
different ages, and reflect background levels, 
consistent estimates of intrinsic elimination 
half-lives can be obtained if the effects of body 
weight changes and ongoing exposure are 
accounted for.

Contrast between apparent and intrin-
sic half-lives. Table 3 shows apparent elimi-
nation half-lives collected from the literature. 
Apparent half-lives reflect the overall effect of 
intrinsic elimination, ongoing exposure, and 
body weight changes on concentrations as a 
function of time. Apparent half-lives are subject 
to a considerably larger variability (Table 3) 
than are estimates of intrinsic half-lives at back-
ground concentration levels (Table 2), which 
reflect only interindividual variability of intrin-
sic elimination at similar concentration levels. 
Apparent elimination half-lives in Table 3 differ 
by up to a factor of 50 for the same congener. 

In contrast, the estimates of intrinsic elimina-
tion half-lives at background concentration 
levels in Table 2 differ by less than a factor of 3 
and many by less than a factor of 2, although 
they were derived from different data types 
(LD and CSD).

The large variability in apparent half-
lives reflects cohort-specific differences in all 
three main factors that influence the observed 
concentration trend. First, changes in body 
weight influence the apparent half-life. 
Growth during childhood leads to growth 
dilution; that is, much shorter apparent half-
lives are observed in infants than in adults 
(Milbrath et al. 2009). Further changes in 
body weight during adulthood may also 
affect the apparent elimination half-life; for 
example, strong weight loss may even lead to 
an increase in chemical concentrations with 
time, which correspond to a negative apparent 
half-life. In our estimation of intrinsic half-
lives, we use a lifetime profile for changes in 
body weight specific to the U.K. population 
(Alcock et al. 2002) that takes into account 
growth dilution during childhood, which is 
a strong effect in all individuals. For adults, 
the body weight profile reflects the population 
average. Second, the rate of intrinsic elimina-
tion is faster in cohorts with initial concen-
trations significantly above background, for 
example, in incident cohorts measured soon 
after the exposure incident (Sorg et al. 2009). 
In such cases, intrinsic elimination reflects the 
individual status of the patient (e.g., increased 
elimination via skin, feces, and induced 
metabolism). In our estimation of intrinsic 
half-lives, we largely exclude this source of 
variability by using data from individuals 
exposed to background concentrations. Third, 
in cohorts exposed to background concentra-
tions, ongoing exposure can lead to very long 
apparent elimination half-lives. In our estima-
tion of intrinsic half-lives, we account for this 
effect by explicitly describing ongoing expo-
sure in the model equation, which allows us 
to parameterize and quantify intrinsic elimi-
nation as a distinct process.

All three effects may contribute to the 
observation of increasing apparent half-lives 
in initially highly exposed cohorts that were 
observed for several decades (Masuda 2001) 
(Table 3). Because concentrations approach 
background levels, ongoing exposure becomes 
relevant also in these incident patients. 
However, it is not possible to conclude from 
observed concentration trends whether the 
increasing apparent elimination half-lives rep-
resent a slowdown of intrinsic elimination, for 
example, due to decreased metabolic activity 
at lower concentrations (Sorg et al. 2009), or 
whether it is due to increased confounding 
from ongoing exposure or body-weight loss.

The strong influence of ongoing exposure 
and loss of body weight on half-life estimates 
from incident cohorts that were measured 
decades after the exposure incident is dem-
onstrated by the observation of very long and 
even negative apparent half-lives reported for 
pentachlorodibenzofuran in Yusho patients 
(Matsumoto et al. 2009). Increasing con-
centrations (i.e., negative half-lives) can be 
explained only by additional intake or signifi-
cant weight reductions under the condition 
that the substance is not a metabolite synthe-
sized within the body. Very long or infinite 
apparent elimination half-lives have also been 
reported for PCBs (Table 3).

The longest intrinsic half-lives from our 
study are 11.5 years for PCB-180, 15.5 years 
for PCB-170, and 14.4 years for PCB-153 
(Table 2). Other studies (Kreuzer et al. 1997; 
Shirai and Kissel 1996) have indicated that 
plausible maximum elimination half-lives of 
PCBs and dioxins are probably not much 
larger than 10 years. Our results are further 
evidence that a maximum intrinsic elimina-
tion half-life for persistent chemicals such as 
PCBs exists and is approximately 10–15 years. 
This half-life range likely reflects non metabolic 
elimination processes (Kreuzer et al. 1997; 
Rohde et al. 1999).

Reducing variability in elimination half-life 
estimates. Most studies shown in Tables 2 and 3 
report “half-lives” or “elimination half-lives” 

Table 3. Estimates of human apparent elimination half-lives (years) for eight PCB congeners.

Data type/studies PCB-28 PCB-52 PCB-105 PCB-118 PCB-138 PCB-153 PCB-170 PCB-180
LD (adults)

Brown et al. 1989 1.4 3.9 5.8 6–7 12.4
Bühler et al. 1988 0.27–0.82 0.88 0.93 0.34
Chen et al. 1982a 0.58 0.83 32 47 47 Inf
Chen et al. 1982a 0.51 0.77 20 26 71 Inf
Masuda 2001b 1.6 4.5 4.2 5.9 6.0
Masuda 2001b 17.6 12.8 9.1 18.4 16.7
Ryan et al. 1993c 1.1 3.4 3.8 3.9 4.3
Wolff et al. 1992 4.8 5.5 Inf 9.6 16.7 Inf 9.9
Yakushiji et al. 1984 3.0 16.3 27.5

Extrapolation (infants)
Milbrath et al. 2009 0.1 0.2

Inf, infinite. 
aRecalculated by Shirai and Kissel (1996). bSame patients (Yusho) but observations are from different time intervals after 
the exposure event. cMedian values of three patients. Empty cells indicate that no value was reported for the congener.
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without further specification. However, to 
make half-life estimates usable, a conceptual 
and semantic distinction between apparent 
and intrinsic elimination half-life estimates is 
needed. This distinction will help to reduce the 
use of strongly different estimates of elimina-
tion half-lives in epidemiologic assessments, 
where they are needed to parameterize intrin-
sic elimination in PK models. An example is 
PCB-153, for which half-lives selected for use 
differ by more than a factor of 5, including 
5 years (Toft et al. 2008) and 27 years (Verner 
et al. 2009). Apparent half-lives reflect the over-
all effect of several factors, including intrinsic 
elimination, ongoing exposure, and changes in 
body weight. If on going exposure is small rela-
tive to concentration levels and body weight is 
constant, apparent half-lives may reflect intrin-
sic elimination, but because there is a concep-
tual difference between intrinsic and apparent 
half-lives, they will generally also have different 
numerical values. Importantly, both types of 
half-life estimates can be derived from both LD 
and CSD.

Uncertainty of estimated intrinsic half-
lives. To evaluate the intrinsic half-lives 
obtained with our fitting procedure, we modi-
fied the half-lives by a factor of 1.5 and reran 
the PK model with these modified half-lives. 
Visual inspection of the results showed that 
with these modified intrinsic half-lives the 
calculated body concentrations clearly do not 
match the data points from the two sets of 
CSD. This implies that the uncertainty of 
the estimated intrinsic half-lives is less than 
a factor of 1.5. This is consistent with the 
interstudy variability of the intrinsic half-lives 
in Table 2, which is a factor of 2 or less for 
eight of the nine congeners and a factor of 3 
for PCB-138. Also the two estimates obtained 
from our two objective functions, OFCSD_Only 
and OFCSD_Int, are in good agreement (differ-
ence of less than a factor of 1.4 for seven of 
nine congeners and a factor of 2 for PCB-170 
and PCB-180). We recommend the estimates 
based on OFCSD_Int, because they integrate 
information from all empirical data sources.

A strength of our approach is that our esti-
mates of intrinsic PCB elimination half-lives 
have a broad empirical base. In contrast to 
biomonitoring data types with no or only one 
temporal dimension (Table 1), multiple sets 
of empirical age–concentration CSD data can 
be satisfactorily fitted only if good agreement 
in both temporal dimensions, within each 
set of CSD (age) and between different sets 
of CSD (calender time), is achieved. This is 
shown in Figure 1C [and further illustrated in 
Supplemental Material, Figure 1 (doi:10.1289/
ehp.1002211)]. The additional dimension of 
information provided by more than one set of 
CSD makes it possible to derive intrinsic elimi-
nation half-lives directly from the biomonitor-
ing data (objective function OFCSD_Only).

Limitations and research perspectives. We 
did not separate empirical data according to sex 
because concentration differences between male 
and female individuals were small in our data 
sets [see Supplemental Material (doi:10.1289/
ehp.1002211)], which is also consistent with 
results from other cross-sectional studies (Toms 
et al. 2009). In addition, a separation by sex 
would have reduced the size of the data set and 
therefore the precision of the least-square opti-
mization. Correspondingly, we used median 
anthropometric data for males and females in 
the model (Alcock et al. 2000). We also did 
not separate our data according to parity and 
smoking status because such information is 
not consistently available for both data sets. 
Although these factors may influence appar-
ent elimination half-lives (Milbrath et al. 
2009), the influence is likely to be small for 
cohorts at background exposure levels, relative 
to the strong influence from ongoing expo-
sure and body weight changes. For our data 
set from 2003 this is substantiated by the lack 
of significant correlations between parity and 
concentration in the data set (Thomas et al. 
2006). Increasing efforts devoted to biomoni-
toring provide a promising perspective that 
time series of even more than two sets of age– 
concentration CSD that are stratified for fac-
tors such as sex, parity, or smoking status will 
become available for many persistent chemi-
cals. If applied in a consistent conceptual 
framework that accounts for the influences of 
ongoing exposure and body weight changes, 
such stratified CSD may allow researchers to 
estimate statistical distributions reflecting the 
interindividual variability of intrinsic elimina-
tion half-lives of persistent chemicals.

Conclusions
Intrinsic elimination half-life estimates are 
required to translate between exposure and 
body concentration. A clear discrimination 
between apparent and intrinsic elimination 
half-lives helps to explain the high variabil-
ity in reported elimination half-lives of per-
sistent chemicals in humans. Multiple sets 
of age–concentration CSD biomonitoring 
data that represent the general population at 
background exposure levels, combined with 
a population PK model, have the potential 
to provide information about changes in 
on going exposure and intrinsic elimination 
kinetics of persistent chemicals.
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