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1 Abstract

This paper proposes an adaptive anti-windup (AW) compen-
sation scheme for linear control systems with saturating ac-
tuators. A heuristic online control law is proposed using li-
brary of Haar wavelet packets in order to build a compen-
sator controlling the reset windup phenomenon. An exam-
ple is included to illustrate the effectiveness of the proposed
method.

2 Introduction and Motivation

Industrial processes impose nonlinear limits on their process
variables, while linear design techniques assume that there
are no such limits. All physical systems need actuators for
achieving control and these are subject to saturation. When
this happens the feedback loop is effectively broken and if
a regulator with an integrator is used the error will continue
to be integrated. The value at the output of the regulator can
become very large and often degrades the closed-loop per-
formance in the form of large overshoot, long settling time
and sometimes even instability. This is more evident if com-
pared with the expected linear performance for the systems.
The phenomenon described is called “windup”. The windup

phenomenon has attracted interest in academic and in indus-
trial community, already at the end of the eighties, see [1],
the problem became to have the first solution, an overview
of the basic schemes is available in [5]. More recent work
like in [4] analyses the conditions in order to find invariant
subspaces and in [6] the preaction is employed to enhance
the performance. Wavelets and wavelet packets are becom-
ing popular at the beginning of the nineties, see for instance
[3], and their applications are already developed in many and
different field. Recent works in wavelet [9, 10] have indi-
cated wavelets as a promising approach for off line analysis,
monitoring and classification. More, recent works [7, 11]
developed efficient algorithms in order to detect and clas-
sify transient harmonic phenomena as pantograph vibration
andinrush currentrespectively. Wavelets have shown to be
properly suitable to analyze electrical transients and noise.
Among the wavelet family we have chosen the Haar ba-
sis, which is particularly suitable for the analysis of square-
waveform functions.

This paper tries to apply wavelet tool in an anti-windup
scheme in order to use time frequency information of the
windup phenomenon. A heuristic adaptive control law is
calculated using Haar bases in wavelet packets. The least
squares method is applied to calculate a reset windup func-
tion optimizing the energy index error as in [8] but indepen-
dently from the knowledge of the plant parameters. The en-
ergy index is optimized over subspaces corresponding to the
time frequency cells where the saturating input signals and
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Figure 1: Anti-windup scheme using wavelet.

the desired input signals have the biggest distance. In other
words the signal belonging to thesaturating subspacesis
calculated and used to reset the windup. The Haar functions
fit quite good the saturating input signals and show good pre-
cision and thus a quick switch-off. The particular structure
of the wavelet tree allows to construct efficient and effective
algorithms, known and consolidated DSP techniques can im-
plement them. It is known, in fact, that for a time signal of
length N (where N must be a power of two) the Fast Fourier
Transform (FFT) requires orderN log2N operations, while
the Wavelet Transform needs only order N operations, which
is the best possible.

The idea is very simple and it is the basis for every prob-
lem formulation of the anti-windup [5, 12]: it is necessary
to recognizewhere and whenthat windup is present and to
find a feedback compensator for resetting to integrator to a
‘normal’ value.

3 Problem Statement

Without loosing generality we will consider the basic
scheme as represented in Fig. 1. Let~xc(t) = xc(t) � �xc(t)
be the mismatch between the constrained and unconstrained
closed-loop scheme for the integral compensator as repre-
sented in Fig. 1.
One considers the two different compensator dynamics:

if ~xc(t) > �, where� is the saturating level of the actua-
tors, then

_xc(t) = xd(t)� x(t) + uw(t)
uc(t) = xc(t)

(1)

if ~xc(t) � � then

_xdc(t) = xd(t)� x(t)
udc(t) = xdc(t)

(2)

The classical anti-windup schemes normally developed
for PI or PID controllers, involve turning off the integral ac-
tion in the presence of saturation. In the literature, windup
is interpreted as an inconsistency of the output or the state
of the regulator between the case with and the case without
saturation (see [12] and [8] respectively).

According to the Fig. 1 we can define two cost functions:

J1 =

Z 1

0

ku(t)� �u(t)k
2
d(t) (3)

and

J2 =

Z 1

0

kxc(t)� �xc(t)k
2
d(t) (4)

wherek � k is the Euclidean norm, with�u(t) and �xc(t)
we have indicate respectively the output and the state of the
regulator in case of saturation. In our case the two indices
are equivalent.

The problem can be formulated in the following way.

Given the scheme depicted in Fig. 1 which can be
efficiently represented for the compensator by (1) and by
(2). Find a controlling lawuw(t) such that the index defined
in (4) is optimized.

One will see how, using the Haar wavelet tool, it results
relatively easy to find the control law.

Given now a functionf(t) then loosely speaking, the
functionf(t) can be decomposed into

f(t) =
X
j

X
n

w(d;j;n) (d;j;n)(t) (5)

where the (d;j;n)(t) are the wavelet functions, normally
obtained by dilating and translating a mother function
 (t), the indexj andn denote the dilation and translation
respectively andd is the level of the tree,w(d;j;n) is the
weight coefficient for (d;j;n)(t).

The proposed method is related to theParseval’s Theorem
andTime-Frequency Contentfor a signal. If we are using
orthonormal bases as in (5) then the Parseval’s Theorem re-
lates the energy in each of the expansion components and
their wavelet coefficients. Given a tree of the orthonormal
wavelet bases then the signalf(t) can be represented as fol-
lows:

Z
jf(t)j2d(t) =

X
j

X
n

jw(d;j;n)j
2: (6)

The energy of the signal in time domain is partitioned at
different resolution levels.

The problem statement can be summarized as follows:



� Choose previously the best family which represents in
the best way the signals.

� Choose the best(d; j; n) cells where to describe the
wanted signal.

� Calculate the control lawuw(t) which optimizes, in a
heuristic way, the index defined in (4).

4 Background

We describe very quickly an orthogonal wavelet basis of
L2(<). The oldest example of wavelet functions are the
Haar functions, h

(d;j;n); (t), derived from the Haar mother
wavelet:

 h
(1;0;0)(t) =

8<
:

1 0 � t < 1
2

�1 1
2 � t < 1

0 otherwise:

Where ’d’ is a scale parameter, ’j’ is a phase parameter and
’n’ is a time translation parameter. In order to understand
better we will show an example of a set of Haar wavelet
function which represents a part of a ’Haar wavelet packet
tree’, see Fig. 3, one will see later a bit more in depth.

Basically the Haar basis has the two following property:

� the h
(d;j;n)(t) are orthonormal;

� anyL2(<) functionf can be approximated, up to arbi-
trarily small precision, by a finite linear combination of
the h

(d;j;n)(t).

In particular, to be more precise, the coefficientsw(d;j;n)

(the weight coefficients) are calculated as follows:

w(d;j;n) =

Z
I

f(t) h
(d;j;n)(t)d(t):

Wheref(t) is the wanted signal andI is the considered
time interval.

More in depth, to each wavelet packet function one can
associate a timet and a frequencyf . These will be uncertain
by amounts�t and�f , respectively. The result may be in-
terpreted as a rectangular patch of dimensions�t by �f ,
located around (t, f ). One will call the patch a phase cell, or
Heisenberg box, in honor of the uncertainty principle, which
limits how small the area of the patch may be. An orthonor-
mal basis corresponds to a disjoint cover of the phase plane
by phase cells (Heisemberg boxes). One representation of
this phase aspect is depicted in Fig. 2.

More rigorously,
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Figure 2: Time frequency cells in phase plane.

Definition 1 Let a tree of wavelet packets be the collection
of functions of the form

 (d;j;n)(t) =  j(2
dt� n) (7)

where(d; n) 2 Z andj 2 N.

We are talking about truncated indices, thus finite libraries of
wavelet packets. Here, thepyramidalpacket is represented
with the indices(d; j; n), d is the level of the tree (scaling pa-
rameter),j is the frequency cell (oscillation parameter) and
n the time cell (localization parameter).

The function (d;j;n)(t) =  j(2
dt�n) has support of size

2�d of the Nyquist frequency.
To go a little bit more in depth, we suppose that the

signal consists ofN = 2N0 dyadic and equally spaced
samples and the library tree contains all the Haar function
analyses to levelN0 of the frame, with windows of size
2N0 ; 2N0�1; :::::::1: The basis function will be indexed by
the triplet (d; j; n): if N is the total number of the sam-
ples then the corresponding samples related to thed level
with relative desampling areNd = 2d and0 � d � N0,
0 � n < 2N0�d, 0 � j < 2d-1.

The scale parameterd gives the number of decomposi-
tions of the original signal window into subwindows and the
position indexn numbers the adjacent windows.Thus the
information cell is drawn over the vertical axis (frequency)
interval Ij = [2N0�dj; 2N0�d(j + 1)[: In general, the sub-
space over the time subintervalIn consists of the function
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Figure 3: A set of Haar functions.

with the associated information cell alongside the time inter-
val In = [2dn; 2d(n + 1)[ on the horizontal (time) interval.
Each subdivision halves the nominal window width and thus
the resolution level, in particular the resolution level on the
tree could be represented like a collection of rectangles:

[2N0�dj; 2N0�d(j + 1)[�[2dn; 2d(n+ 1)[: (8)

4.1 A Spectral Distance

We need a measure of the distance between two signals in
order to find the time-frequency cells where the saturating
input signals and the desired input signals have the big mis-
match. As there exist many spectral distance measures, ev-
ery measure dedicated to one particular application, for an
overview see [2], we define the distance between two sig-
nals in wavelet domain in the following way:

Definition 2 Given two signalss0(t) and s1(t) and their
wavelet decomposition:

s0(t) =
X
j

X
n

w0(d;j;n) (d;j;n)(t)

and
s1(t) =

X
j

X
n

w1(d;j;n) (d;j;n)(t):

One defines distanceD(d;j;n)(s0; s1) betweens0(t) and
s1(t) 8 (d; j; n) the function

D(d;j;n)(s0; s1) = kj
w1(d;j;n)

w0(d;j;n)

j log j
w1(d;j;n)

w0(d;j;n)

jk: (9)

Where the indices(d; j; n) indicates the time-frequency
cells in the wavelet packet decomposition.

Remark 1 One wants to remark that this distance is not a
true distance, for instance it doesn’t satisfy the symmetric
property. One doesn’t need to define a metric space but one
needs just to define a distance which can illuminate the dif-
ference between two signals.

Remark 2 It is easy to see that the distanceD(d;j;n)(s0; s1)
defined in (12) is stronger1 than the spectral distance de-
fined in wavelet domainDs(d;j;n)(s0; s1) = k log j

w1(d;j;n)

w0(d;j;n)

jk

8 (j; n) jw1(d;j;n) j > jw0(d;j;n) j.

The latter remark indicates the measure defined in (12)
like an efficient measure in order to pick up a suitable sub-
space where to represent the signals. More, the above de-
fined index is very quick to calculate. The proposed algo-
rithm will try to find an input functionuw(t) which opti-
mizes the index defined in (4) subtracting the signal belong-
ing to the subspaces where the distance between the saturat-
ing input and the not saturating input has maximum.

5 The proposed Algorithm

Given a suitable dyadic time window, let the indexi the sam-
pling index and

H =
n
 h
(d;j;n)(t); (d; n) 2 Z; j 2 N; t 2 <

o

the truncated Haar wavelet packet tree which we will
consider. If we think the signal in the above mentioned time
window then the algorithm can be represented as follows:

Begin Loop
for i = 1 to1

8 �t such that jxc(�t)j � �xc then uw(t) = 0
else

Let

f1i(t) =

Z t

0

uwi
(�)d�

f2i(t) = � �

Z t

0

�
xd(�) � x(�)

�
d�:

1One recalls that a distanceD1 is saidstrongerthan the distanceD2 if
8 (s0; s1) D1(s0; s1) � D2(s0; s1).



step 1

Decompose on all the Harr packet tree the signalf2i(t):

J
�
h(d;j;n)

�
=

�
f2i(t)�

X
(d;j;n)2H

h(d;j;n) 
h
(d;j;n)(t)

�2
(10)

this yields:

h(d;j;n) =
� P

(d;j;n)2Hhf2i(t);  
h
(d;j;n)(t)i�P

(d;j;n)2H

�
 h
(d;j;n)(t)

�2�(�1)

�
: (11)

step 2

Select the subspaces such that:

flh(d;j;n)g = arg
�

max
(d;j;n)

D(d;j;n)(xc(t); �xc(t))
�
=

max
(d;j;n)

�
kj
wc(d;j;n)

�wc(d;j;n)

j log j
wc(d;j;n)

�wc(d;j;n)

jk
�
: (12)

step 3

f1i(t) =
X
lh2H

hlh(d;j;n)
 h
lh(d;j;n)

(t);

uwi
(t) =

d

dt

�
f1i(t)

�
:

end loop

6 Simulation

In this section one example is shown to demonstrate the ef-
fectiveness of the proposed method depicted in Fig. 4. The
matlab function which we have defined are coherently cho-
sen according the description in paragraph 5. We have cho-
sen a wavelet packet tree with four level, in particular the
basis function h(t) was chosen equal to Haar function in
order toilluminatethe difference between the saturating and
the not saturating input control. In Fig. 7 two adjacent Haar
functions corresponding to the fourth level are reported. The
window which we are considering is equal to 350 ms, this is
the dominant dynamic of the considered system. In Fig. 5 it
is possible to see how the output is considerable improved.
In fact the saturating inputs are switched-off in a short time-
period as reported in Fig. 6.

+
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+
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Sum1

1/s
Integrator

1.

Gain

MATLAB
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Graph1
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Graph2

du/dt

Derivative
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Figure 4: Simulink/Matlab simulation scheme.

6.1 Discussion

The idea behind the algorithm is to analyse the signal in in-
put to the saturation through the wavelet tree at every sam-
ple. One needs a time window in order to backup the signal,
the length of the window should be dimensioned according
to the frequency resolution which one wants to achieve for
the signal analysis, this in fact depend also on the Nyquist
frequency2. In other words the idea is to decompose the sat-
urating signal over the wavelet tree in order to be able to
recognize the saturating part, from the not saturating part.
This technique has several drawbacks, in fact if one chooses
a too short window one doesn’t have high frequency selectiv-
ity When the window is too long the frequency selectivity is
very high, but one has information too localized in the past.
This aspect could be also dangerous for the stability of the
loop.

The empirical design of the window dimension and a pos-
sible weighted window could be possible solution. In case
of disturbance in output of the system the empirical choice
becomes a bit more difficult, several a priori knowledge on
the noise is in this case becomes necessary.

7 Conclusion

A heuristic adaptive time frequency anti-windup compensa-
tion method is proposed. Haar wavelet bases are adopted
in order to find a control law which guarantees good perfor-
mances optimizing the energy error index. An online control
law running through the Haar wavelet tree is proposed. The
anti-windup compensator is not based on the model of the
controlled plant, the robustness of the method is guaranteed.

2One recalls thatR =
Nf�2

(�d)

N
whereNf is the Nyquist frequency

(Half of the sampling frequency), ’d’ is the level of the considered tree and
N is the length of the signal.
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Figure 5: Output. Solid: Without Antiwindup control.
Dashed: With Antiwindup Control.
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Figure 6: Saturating Input. Solid: Without Antiwindup con-
trol. Dashed: With Antiwindup Control.
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Figure 7: Detail of the orthonormal Haar functions.
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