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1 Abstract

The paper deals with simultaneous noise suppression and sig-
nal compression in order to reconstruct and to monitor quasi
harmonic signals. In particular one is interested in monitor-
ing and recognizing signals as they occur in rail vehicle sys-
tems. One describes an algorithm to estimate discrete signals
from their noisy observations using a library of nonorthonor-
mal bases. The described technique combines theshrinkage
techniqueand techniques in regression analysis usingShannon
Entropy functionandCross Entropy function. When the prob-
lem is to compress and to detect the signals one needs an al-
gorithm which can illuminate the difference between the noise
and the desired signal. Recursive residual iterations with co-
sine and sine bases allow to reconstruct the signal and the noise
with the bestdiscernablebases. Simulations using real mea-
sured data from an electrical railway line are included to illus-
trate and to analyse the effectiveness of the proposed method.

2 Introduction

The harmonic interference problem in electrical railway sys-
tems has received increasing attention in these last years. The
widespread utilization of modern electronic devices, as GTO
or IGBT, can cause interference in signal circuits and commu-
nication systems as well as it can lead to instability problems.
Harmonic detection techniques are also of great importance
for vehicle distortion current monitoring and in many practical
situations not an easy task, their magnitude and phase change
over time.

One presents now an algorithm for signal denoising by using
libraries of nonorthogonal bases (frames) such as local smooth
trigonometric libraries. The method extracts from observed
discrete signals a coherent part which is well represented by the
given waveforms and a noisy or incoherent part which cannot
bewell compressedby the waveforms. The proposed technique
is essentially a nonparametric regression analysis.

The algorithm consists of creating a map for the values of
theShannon Entropy functionon every time-frequency cell of
the sine and cosine packets for the measured signal. One splits
the libraries in two classes: a coherent (for instance with cosine
bases) and an incoherent (with sine bases) decomposition, by
minimizing and by maximizing the Shannon Entropy function
and the Cross Entropy function respectively.

One selects the bases with the best compression level and
the bases whichilluminate the difference between the noise
(incoherent decomposition) and the signal (coherent decompo-
sition). Recursive residual iterations with biorthogonal cosine
bases for the coherent decomposition and with sine bases for
the noise allow to reconstruct the signal and the noise with the
bestdiscernablebases.

It is known that the Shannon entropy function is a measure
of the flatness of the energy distribution of the signal so that
minimizing this leads to an efficient representation mainly for
signal compression [3]. When the problem is to compress and
to detect in order to reconstruct the signals one needs an al-
gorithm which can illuminate the difference between the noise
and the signals. It is known that theCross Entropy functionis
a measure of the discrepancy between two or more bases, [7].

Now, why is one using wavelet packets and their rela-
tive biorthogonal families in nonorthogonal libraries ? Why
smooth trigonometric bases ?

One needs to define alanguageto describe the signals.
More, one has to optimize certain criteria depending on the
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particular problem. The language must be as much versatile
as possible and as much elastic as possible in order to describe
various local physical features of the signal. In the mean time
the method must be computationally efficient to be practically
applied. The wavelet frame provides flexible coordinate sys-
tem, with their redundantadaptive time-frequency cells are
able to capture the features of the signals in a reasonable com-
putational calculations. The smooth trigonometric bases match
very well the desired harmonic signal and they can detect the
information in fewcoherent data. More, the nonorthogonal li-
braries allow more elasticity in order to approximate the mea-
sured signals. In fact by relaxing the orthogonality, much more
freedom on the choice of the wavelet function is gained to
guarantee good choices of the compressed parameters, even
though the fast algorithms associated to the orthogonality are
lost, [9]. The presented case calls for a good fitting of the data
because of the few a priori knowledge. In order to consider and
to use the nonorthogonality of the frames which generates an
interaction between the elements of the bases1 the algorithm
considers to every step all the elements of the bases previously
selected, without any elimination, see [9].

Because of the decomposition on a nonorthogonal basis is
not unique one needs to stop the algorithm, for instance, with
a threshold criterion at the stagei for theL2 norm of a differ-
ential error.

Simulations using real measured data on the vehicle line are
included to illustrate and to analyse the effectiveness of the
proposed method.

The paper is organized as follows. In section 3 one defines
the problem in an analytical way . In section 4 one discusses
briefly several aspects connected to the nonorthogonality and
to the smooth trigonometric wavelet packets and the choice of
the best regrossor family. In section 5 and in section 6 are de-
voted to the presentation of the algorithm with its mathematical
details.

3 Problem Formulation

Let us consider a discrete degradation model

d = f + n; (1)

whered, f , n 2 X � <d0 andd0 = 2n0 . The subspaceX
is calledsignal spaceandd0 is the number of samples of the
signal. The vectord represents the noisy observed data and
f is the unknown true signal to be estimated. The vectorn is
the white Gaussian noise (WGN), its distribution in assumed
unknown. One considers an algorithm to estimatef from the
noisy observationd. First, one prepares the bases mentioned
in the previous section in particular one selected the trigono-
metric bases because the signalf has sinusoidal shape. Let
beB the candidate library packet tree to describe the signalf .
For sake of data compression one wants to compress the signal
with a small number of parameterk, as small as possible. In
the meantime one wants to minimize the distortion between the

1In a frame the decomposition is not unique.

estimate and the true signal by choosing the most suitable ba-
sisBm. In general taking a large number ofk parameters one
obtains smaller values of the error but clearly this generates
the so calleddata overfitting. Now the conflict is clear and the
problem could be performed like a problem of nonparametric
model identification with few a priori knowledge.

The problem can be so formulated:

Given a measured datad = f +n as in (1) where in partic-
ular f is the ”quasi harmonic” signal,n is a Gaussian noise
with a unknown distribution. Given the trigonometric library
B = fB1;B2; :::BMg, let f = Wm�

k
m, whereWm 2 <k�k

is a nonorthogonal matrix whose column vectors are the basis
elements ofBm and the�km are the expansion coefficients
of f with only k no-zero coefficients. Find a mapK, called
feature extractor, K : X ! F � <k (normally more than
one) withk � d0 in order to extract relevant features such that

min
Wm;�km

�̂2 =
1

N
kd�Wm�

k
mk2: (2)

The problem can be attacked in two steps:

Step 1:Data shrinkagein order to reduce the numberd0 of
samples.

Step 2: Choice of the best subspaces in order to have the
time frequency cell basis coordinates.

4 Giving Up on Orthogonality

Wavelet transform and wavelet series are becoming popular in
signal processing and numerical analysis. Loosely speaking, a
functionf(t) can be decomposed into

f(t) =
X
j

X
n

wj;n j;n(t) (3)

where the j;n(t) are the wavelet functions, normally obtained
by dilating and translating a mother function (t), the index
j andn denote the dilation and translation respectively and
wj;n is the weight coefficient for j;n(t). The most popular
algorithms are related to the orthonormal wavelet bases, see
[4], characterized from fast and elegant algorithms. There are,
besides these, less used, thewavelet frames, see [4], for which
the computations of the coefficients are more complicated but
which have certain advantages. As wavelet frames consist of
nonorthogonal wavelet families, they areredundant bases. To
be more formal:

Definition 1 A family of functionsf j;n(t); (j; n) 2 Z; t 2
<g in a Hilbert spaceH is called a frame ofH if for every
elementf(t) 2 H there are two positive constantsA andB
such that:

Akf(t)k2 �
X
j;n

khf(t);  j;n(t)ik2 � Bkf(t)k2: (4)
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Figure 1: In Top: Inrush current: time domain. In Bottom:
Inrush current: windowed spectral analysis.

Where withh�; �i one is indicated the inner product and with
k � k the norm.

In this approach one has a drawback, the optimal decompo-
sition on a nonorthogonal basis is a NP-complete problem and
one needs to stop the algorithm, for instance, with a threshold
criterion at the stagei for theL2 norm of the differential error.

Now, the first question is which function to use like activa-
tion function. This is a difficult decision, the collected expe-
rience on this sense doesn’t help too much. All of the model
structures are capable of approximating any ’reasonable func-
tion’ [4]. Thus the question is pick one that ’suits the appli-
cation’, in the sense that only few terms will be needed. A
suitable criterion very known in literature is to select the basis
which, once fixed a threshold level, has the minimum number
of elements in the selected frame. Now, having chosen the best
family, how to choose the size of the frame subset ? Finally,
how is it possible to select the terms of the subset ?

4.1 Choosing the Best Family Regressor

The case presented in this paper has quasi-harmonic signals
that change amplitude and phase over time. This latter aspect
suggests the wavelet like activation function. One shows in
Fig. 1, where are depicted a measured signal in time domain
and its windowed Fourier transform respectively, how the data

are very well concentrated around several frequencies, in this
case they are multiple of the fundamental (50 Hz). The picture
in Fig. 1 seems to suggest a function with a frequency window
and time support. A suitable family for this case is the smooth
trigonometric wavelet packets. One wants just to recall several
basic aspects, further details in [1].

Definition 2 Let a library of wavelet packets be the collection
of functions of the form

 (d;j;n)(t) =  j(2
dt� n) (5)

where(d; n) 2 Z andj 2 N.

One is already remarked that one is talking about truncated
indices, thus finite libraries of wavelet packets. Here, thepyra-
midal packet is represented with the indices(d; j; n), d is the
level of the tree (scaling parameter),j is the frequency cell (os-
cillation parameter) andn the time cell (localization parame-
ter).

One considers a cover of the real axis< =
S1
�1 Ii, where

Ii = [�i; �i+1) and�i < �i+1.
Write Ti = �i+1 � �i = jIij and letWi(t) be a window

function supported in[�i � Ti�1
2 ; �i+1 +

Ti+1

2 ] such that

1X
�1

W2
i (t) = 1 (6)

and

W2
i (t) = 1�W2

i (2�i+1 � t) for t near �i+1:

(7)
These conditions tell how the bell function should be taken

in order to ensure the orthogonality of the basis. This shows
that choosing a basis consisting of adjacent functions, one ob-
tains an orthonormal basis. On the contrary if one considers
bases on different levels of the tree don’t form an orthonormal
basis

The functions

Si;k(t) =
2p
2Ti

Wi(t)sin[(2k + 1)
�

2Ti (t� �i)] (8)

form an orthonormal basis ofL2(<) subordinate to the parti-
tion Wi. The collection of such bases forms a library of or-
thonormal bases [1]. One can form a library of orthonormal
local cosine bases:

Ci;k(t) =
2p
2Ti

Wi(t)cos[(2k + 1)
�

2Ti (t� �i)]: (9)

One has to remark that taking equal smooth windowsWi(t)
(see [1]) then sine/cosine orthogonality can be maintained, see
Fig. 2 where one is depicted the sine/cosine bases related to
the second level of the packet tree with a frequency of 50 Hz.

It is easy to check that ifHi denotes the space of functions
spanned bySi;k for k = 0; 1; 2; :::: thenHi+Hi+1 is spanned
by

Si;k(t) = P(t)sin[(2k + 1)
�

2(Ti + Ti+1)
(t� �i)]; (10)
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Figure 2: In Top: Biorthogonal smooth local sine and cosine
functionS(2;2)(t) andC(2;2)(t). In Bottom: Adjacent (orthog-
onal) cosine waveforms with smooth windowC(2;1)(t) and
C(2;2)(t).

where

P2(t) =
1p

2(Ti + Ti+1)

�W2
i (t) +W2

i+1(t)
�

is a ’window’ function covering the intervalIi [ Ii+1.
In Fig. 2 one is depicted the sine and cosine biorthogonal

functions in the time domain, where one is built the functions
with the prototype cutoffW(t) like a sine function.

It easy to see how the time and frequency cells are linked
in a dyadic way, this sort of analysis is equivalent to wavelet
packet analysis which allows us to perform an adapted Fourier
windowing directly in the time domain. The wavelet packet
library is constructed by iterating the wavelet algorithm.

From now on and in order to formally define thelibrary of
wavelet packetsone will consider a new index notation.

Definition 3 Let a library of wavelet packets be the collection
of functions of the form

 (d;j;n)(t) =  j(2
dt� n) (11)

where(d; n) 2 Z andj 2 N.

One is already remarked that one is talking about truncated
indices, thus finite libraries of wavelet packets. Here, thepyra-
midal packet is represented with the indices(d; j; n), d is the
level of the tree (scaling parameter),j is the frequency cell (os-
cillation parameter) andn the time cell (localization parame-
ter).

The function (d;j;n)(t) =  j(2
dt� n) is roughly centered

at2�dn, has support of size� 2�d and oscillates� j.
Taking a basis with cells on different level of the tree one

obtains a nonorthogonal basis (frames): the symmetry of the
windows is lost but not their derivability, they are sums of the
derivable functions. In the other words, taking basis elements
on different levels of the tree which cover the real axis< one
is considering superpositions of bases with different resolution
frequency cells, the orthogonality is lost. Our algorithm will
work transversally on the wavelet packet tree without any
restriction in order to use all the possible combinations of
the bases, all the possible frames. Once selected the family
regressor, for instance the truncated sine/cosine wavelets, the
(d; j; n) parameterized family:
n
Rc;Rs

o
=

n
 c(d;j;n)(t);  

s
(d;j;n)(t); (d; n) 2 Z; j 2 N; t 2 <

o

should contain a finite number of wavelets, as less as possible,
so that the regressor selection procedure can be efficiently
applied. Given an approximating wavelet library not all the
wavelet functions are useful, normally only a small number of
the coefficients are important, the other ones can be neglected.
In general one can select the candidate library as follows:
n
Rc; Rs

o
=

n
 c(d;j;n)(t);  

s
(d;j;n)(t) : (d; j; n) 2 I1 [ I2 [ ::::::: [ IK

o

(12)
with K = 1; 2:::::::L and

Ik =
n
(d; j; n) : k c(d;j;n)kp > �; k s(d;j;n)kp > �

o
; (13)

where� is a chosen small positive number. In this way the
’empty’ wavelets are eliminated from the wavelet frame. In
other words one is starting from a regular tree packet (library)
and one selects only those which their support hit our training
data. This method is called by some authorswavelet shrink-
age [2]. One will show that with very few bases of the local
trigonometric functions one can obtain a good function detec-
tor.

5 Mathematical Details

Let Rc =
n
 c(d;j;n)(t); (d; n) 2 Z; j 2 N; t 2 <

o

and

Rs =
n
 s(d;j;n)(t); (d; n) 2 Z; j 2 N; t 2 <

o
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be the truncated cosine and sine packet frames respectively
as defined in [8], andY0(t) the real row signal.

0. Define the initial conditionc(0)(t) = s(0)(t) =
Y0(t) = d andfc0(t) = 0, fs0(t) = 0. Fixed an M index then

Begin-loop
1. For i = 1; 2; ::M:

Calculate the weightsc(d;j;n), s(d;j;n) on all cosine and sine
wavelet packet trees according the index:

J
�
c(d;j;n); s(d;j;n)

�

=
�
Y(i�1)(t)�

X
(d;j;n)2Rc

c(d;j;n) 
c
(d;j;n)(t)� (14)

X
(d;j;n)2Rs

s(d;j;n) 
s
(d;j;n)(t)

�2
;

this yields:

c(d;j;n) =
�P

(d;j;n)2Rc
hc(i�1)(t);  c(d;j;n)(t)i�P

(d;j;n)2Rc

�
 c(d;j;n)(t)

�2�(�1)
�
; (15)

s(d;j;n) =
�P

(d;j;n)2Rs
hs(i�1)(t);  s(d;j;n)(t)i�P

(d;j;n)2Rs

�
 s(d;j;n)(t)

�2�(�1)
�
; (16)

wherec(i�1)(t) ands(i�1) (t) are the residual signal of the
stage(i� 1).

2. Let

Vc = �
X

(d;j;n)

� P̂�c(i�1)(t)
P�c(i�1)(t)

�
�
ln
� P̂�c(i�1)(t)

�

P�c(i�1)(t)
�
�
; (17)

Vs = �
X

(d;j;n)

� P̂�s(i�1)(t)
�

P�s(i�1)(t)
�
�
ln
� P̂�s(i�1)(t)

�

P�s(i�1)(t)
�
�
: (18)

arg(min
fRcg

(kVck)) = flc(d;j;n)g

and
arg(max

fRsg
(kVsk)) = fls(d;j;n)g

with (d; j; n) 2 fRsg and with(d; j; n) 2 fRcg:

3. Let
V(cross) =

X
(d;j;n)2Rc

X
(d;j;n)2Rs

� P̂�c(i�1)(t)
�

P�c(i�1)(t)
�
�
ln
�
P̂
�
c(i�1)(t)

�
P
�
c(i�1)(t)

�

P̂
�
s(i�1)(t)

�
P
�
s(i�1)(t)

�

�
;

arg( max
fRc;Rsg

(V(cross))) = flc(d;j;n) ; ls(d;j;n)g

with the true probabilityP�c(i�1)(t)
�

= kc(i�1)(t)k2
and the estimated probability is calcuated as

P̂�c(i�1)(t)
�
= kP(d;j;n)2Rc

c(d;j;n)(t) 
c
(d;j;n)(t)k2:

In the same wayP�s(i�1)(t)
�
= ks(i�1)(t)k2 and the

P̂�s(i�1)(t)
�
= kP(d;j;n)2Rs

s(d;j;n)(t) 
s
(d;j;n)(t)k2:

4. Updatefc(t), c(t), fs(t) ands(t):

fci(t) = fc(i�1)(t) +
X
lc2Rc

clc(d;j;n)
 clc(d;j;n)

(t);

fsi(t) = fs(i�1) (t) +
X

ls(d;j;n)2Rs

sls(d;j;n)
 sls(d;j;n)

(t);

ci(t) = c(i�1)(t)�
X

lc(d;j;n)2Rc

clc(d;j;n)
(t) cl(d;j;n) (t);

si(t) = s(i�1)(t)�
X

ls(d;j;n)2Rs

sls(d;j;n)
(t) sls(d;j;n) (t):

Yi(t) = Y(i�1)(t)� fci(t)� fsi(t)

End Loop.

6 Simulations and Results

The case which we present consists of a harmonic signal as
presented in the previous sections. As said, this case justi-
fies the choice of the trigonometric bases in order to perform a
coherent and an incoherent expansion. We simulated a white
Gaussian noise in superposition performed from 0 Hz to 250
Hz. How it is possible to see from the Fig. 3 we can recon-
struct the original signal with a good precision. The considered
dyadic signal belongs to the space<512, after thedata shrink-
agethe compression is performed and we obtain a dyadic vec-
tor belonging to the space<8. In other words we can just con-
sider 8 frequencies [0, 50, 100, 150, 200, 250, 300, 350] Hz
for every time frequency cell. The selected wavelet packet tree
has three levels and considering the Nyquist frequency of data
equal to 3500 Hz and the length of the basis equal to 512 sam-
ples we obtain a resolution around 3.5 Hz, 7 Hz and 14 Hz
respectively2.

2One recalls that the resolutionR =
Nf 2

l

N
, whereN is the length of the

basis,l the level of the tree andNf the Nyquist frequency
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Figure 3: Real Signal. From the Top: Inrush current. Inrush
current with noise in superposition. Inrush current through the
denoising algorithm.

7 Conclusions

We have described an algorithm for simultaneously suppress-
ing the additive white Gaussian noise component and com-
pressing the signal component in a data set. The bases in
the library consist of wavelets, more precisely they consist
of wavelet packets where the functions are local trigonomet-
ric bases. Cosine and sine bases with their biorthogonality al-
low to perform an efficient system coordinate. The bases are
selected during every step by maximizing the cross entropy
function which illuminates the difference between the noise
and the desired signal. An example is reported to shown the
applicability and usefulness of the algorithm.
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