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Keywords: Denoising, data compression, trigonometric One presents now an algorithm for signal denoising by using

bases, wavelet packets, rail vehicle control. libraries of nonorthogonal bases (frames) such as local smooth
trigonometric libraries. The method extracts from observed
discrete signals a coherent part which is well represented by the

1 Abstract given waveforms and a noisy or incoherent part which cannot
bewell compressely the waveforms. The proposed technique

The paper deals with simultaneous noise suppression and SigJessentially a nonparametric regression analysis.

nal compression in order to reconstruct and to monitor quasi e algorithm consists of creating a map for the values of

harmonic signa]ss In .particular one is inte_restgd in r_nomtortheShannon Entropy functioon every time-frequency cell of

ing and recognizing signals as they occur in rail vehicle syspe gine and cosine packets for the measured signal. One splits

tems. One describes an algorithm to estimate discrete sign@|g jipraries in two classes: a coherent (for instance with cosine

from their noisy observations using a library of nonorthonorbases) and an incoherent (with sine bases) decomposition, by

mal bases. The described technique combinestinekage inimizing and by maximizing the Shannon Entropy function
techniqueand techniques in regression analysis uShgnnon ;.4 the Cross Entropy function respectively.

:Entrqp¥ functmrandCrc:jsts Ednt:op%/tEJncponV:/hen the prdob— IOne selects the bases with the best compression level and
en:itlﬁmowch?n;]preis;"a%mot ?hecdiff ers:}gnabs t(\);e ?ﬁﬁ Snaintﬁé bases whicliluminate the difference between the noise
90 ch can iiluminate Ihe diflerence between the nois ncoherent decomposition) and the signal (coherent decompo-
and the desired signal. Recursive residual iterations with ¢

sine and sine bases allow to reconstruct the sianal and the n ition). Recursive residual iterations with biorthogonal cosine
y Ine W struct 9N YPses for the coherent decomposition and with sine bases for
with the bestdiscernablebases. Simulations using real mea

. . . X .~ the noise allow to reconstruct the signal and the noise with the
sured data from an electrical railway line are included to illus

bestdiscernablébases.
trate and to analyse the effectiveness of the proposed methode . L
y prop It is known that the Shannon entropy function is a measure

of the flatness of the energy distribution of the signal so that
2 Introduction minimizing this leads to an efficient representation mainly for
signal compression [3]. When the problem is to compress and

The harmonic interference problem in electrical railway sysl© detect in order to reconstruct the signals one needs an al-
tems has received increasing attention in these last years. €¥ithm which can illuminate the difference between the noise
widespread utilization of modern electronic devices, as GT@Nd the signals. It is known that tiiross Entropy functiors

or IGBT, can cause interference in signal circuits and comm@ measure of the discrepancy between two or more bases, [7].
nication systems as well as it can lead to instability problems. Now, why is one using wavelet packets and their rela-
Harmonic detection techniques are also of great importantie biorthogonal families in nonorthogonal libraries ? Why
for vehicle distortion current monitoring and in many practicasmooth trigonometric bases ?

situations not an easy task, their magnitude and phase chang®ne needs to define languageto describe the signals.
over time. More, one has to optimize certain criteria depending on the



particular problem. The language must be as much versatiéstimate and the true signal by choosing the most suitable ba-
as possible and as much elastic as possible in order to descisi®es,,. In general taking a large number bfparameters one
various local physical features of the signal. In the mean timabtains smaller values of the error but clearly this generates
the method must be computationally efficient to be practicallthe so calledlata overfitting Now the conflict is clear and the
applied. The wavelet frame provides flexible coordinate sygroblem could be performed like a problem of nonparametric
tem, with theirredundantadaptive time-frequency cells are model identification with few a priori knowledge.

able to capture the features of the signals in a reasonable comThe problem can be so formulated:

putational calculations. The smooth trigonometric bases match

very well the desired harmonic signal and they can detect theGiven a measured dath = f + n as in (1) where in partic-
information in fewcoherent dataMore, the nonorthogonal li- ular f is the "quasi harmonic” signaln is a Gaussian noise
braries allow more elasticity in order to approximate the meavith a unknown distribution. Given the trigonometric library
sured signals. In fact by relaxing the orthogonality, much mor8 = {By, B, ...Bux}, letf = W,,af , whereW,,, € Rkxk
freedom on the choice of the wavelet function is gained t@s a nonorthogonal matrix whose column vectors are the basis
guarantee good choices of the compressed parameters, eglements of3,, and thea¥, are the expansion coefficients
though the fast algorithms associated to the orthogonality ané f with only k no-zero coefficients. Find a mép called
lost, [9]. The presented case calls for a good fitting of the dafaature extractorC : X — F C R* (normally more than
because of the few a priori knowledge. In order to consider arahe) withk < dj in order to extract relevant features such that
to use the nonorthogonality of the frames which generates an

interaction between the elements of the bAgks algorithm

considers to every step all the elements of the bases previously min &2 = 1 ld — W0k ||°. 2)
selected, without any elimination, see [9]. W o, N "

Because of the decomposition on a nonorthogonal basis isThe problem can be attacked in two steps:
not unique one needs to stop the algorithm, for instance, with
a threshold criterion at the stagéor the £2 norm of a differ- Step 1:Data shrinkagen order to reduce the numbég of
ential error. samples.

Simulations using real measured data on the vehicle line are
included to illustrate and to analyse the effectiveness of the Step 2: Choice of the best subspaces in order to have the
proposed method. time frequency cell basis coordinates.

The paper is organized as follows. In section 3 one defines
the problem in an analytical way . In section 4 one discusses
briefly several aspects connected to the nonorthogonality aad
to the smooth trigopnometric wavelet packets and the choice of

the best regrossor family. In section 5 and in section 6 are d@zayelet transform and wavelet series are becoming popular in
voted to the presentation of the algorithm with its mathematica|gna| processing and numerical analysis. Loosely speaking, a

Giving Up on Orthogonality

details. function f(¢) can be decomposed into
. t) = inWin(t 3
3 Problem Formulation o zj:zn:w” Yin(®) ®)
Let us consider a discrete degradation model where they; . (t) are the wavelet functions, normally obtained
by dilating and translating a mother functigrit), the index
d="f+n, (1) J andn denote the dilation and translation respectively and

wj,n IS the weight coefficient fot); ,(¢t). The most popular

whered, f, n € X C R% andd, = 2". The subspac& algorithms are related to the orthonormal wavelet bases, see
is calledsignal spaceandd is the number of samples of the [4], characterized from fast and elegant algorithms. There are,
signal. The vectod represents the noisy observed data andesides these, less used, Wvelet framessee [4], for which
f is the unknown true signal to be estimated. The vent&s the computations of the coefficients are more complicated but
the white Gaussian noise (WGN), its distribution in assumeghich have certain advantages. As wavelet frames consist of
unknown. One considers an algorithm to estinfateom the  nonorthogonal wavelet families, they astlundant basesTo
noisy observatioml. First, one prepares the bases mentioneble more formal:
in the previous section in particular one selected the trigono- = . i ) .
metric bases because the sigfidias sinusoidal shape. Let D€finition 1 A family of functions{v;,.(t); (7,n) € Z,t €
be B the candidate library packet tree to describe the signal Yt} in @ Hilbert space? is called a frame off{ if for every
For sake of data compression one wants to compress the sighgment/ (1) € # there are two positive constans and B
with a small number of parametér as small as possible. In SUch that:
the meantime one wants to minimize the distortion between the Allf)12 < Z ||(f(t),wj7n(t)>||2 <B|fOI>. @)

1In a frame the decomposition is not unique. Jmn



are very well concentrated around several frequencies, in this

a00f B case they are multiple of the fundamental (50 Hz). The picture
in Fig. 1 seems to suggest a function with a frequency window
2001 , : , . B and time support. A suitable family for this case is the smooth
trigonometric wavelet packets. One wants just to recall several
100} ~ , ~ 1 basic aspects, further details in [1].

Current (A)

Definition 2 Let a library of wavelet packets be the collection
of functions of the form

~100} 7 w(dﬂ',n) (t) = wj (th — n) (5)

~200p ‘ ‘ ‘ ‘ ‘ ‘ ‘ 1 where(d,n) € Zandj € N.
0 0.5 1 15 2 25 3 35 4
Time (sec.)

One is already remarked that one is talking about truncated
indices, thus finite libraries of wavelet packets. Here pea-
midal packet is represented with the indidgs j, n), d is the
level of the tree (scaling parametef)s the frequency cell (os-
cillation parameter) and the time cell (localization parame-
ter).

One considers a cover of the real afis= J™ _ Z;, where
I, = [ai, ai+1) anda; < Qg1 -

Write 7; = a1 — a; = |Z;| and letW;(t) be a window
function supported ify; — %, Qi1 + %] such that

50+

40+

Current (A)
w
S

N
=)
T
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o0
R R > Wit =1 (6)
0 50 100 150 200 250 300 350 — 00
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and
Figure 1: In Top: Inrush current: time domain. In Bottom: )
Inrush current: windowed spectral analysis. Wi(t) =1 - Wi (2aiy1 — 1) for t near O‘i+1(-7)

These conditions tell how the bell function should be taken
in order to ensure the orthogonality of the basis. This shows
Where with(-,-) one is indicated the inner product and withthat choosing a basis consisting of adjacent functions, one ob-
|| - || the norm. tains an orthonormal basis. On the contrary if one considers
bases on different levels of the tree don’t form an orthonormal
In this approach one has a drawback, the optimal decomplasis
sition on a nonorthogonal basis is a NP-complete problem andThe functions
one needs to stop the algorithm, for instance, with a threshold 9 -
criterion at the stagefor the £2 norm of the differential error. Sik(t) = —= -
. o . . . ) 27; 27;
Now, the first question is which function to use like activa-
tion function. This is a difficult decision, the collected expeform an orthonormal basis a?(R) subordinate to the parti-
rience on this sense doesn't help too much. All of the modeébn 1V;. The collection of such bases forms a library of or-
structures are capable of approximating any reasonable furtbtonormal bases [1]. One can form a library of orthonormal
tion’ [4]. Thus the question is pick one that 'suits the appli{ocal cosine bases:
cation’, in the sense that only few terms will be needed. A 9 -
suitable criterion very known in literature is to select the basis ~ C,; ;. (t) = Wi(t)cos[(2k + 1) ==
which, once fixed a threshold level, has the minimum number V2T 2T

of elements in the selected frame. Now, having chosen the besione has to remark that taking equal smooth windoWwst)
family, how to choose the size of the frame subset ? Finallysee [1]) then sine/cosine orthogonality can be maintained, see
how is it possible to select the terms of the subset ? Fig. 2 where one is depicted the sine/cosine bases related to
the second level of the packet tree with a frequency of 50 Hz.

It is easy to check that iHH; denotes the space of functions
The case presented in this paper has quasi-harmonic sigrg@nned bg; , for k = 0,1,2,.... thenH; + H;,, is spanned
that change amplitude and phase over time. This latter aspét
suggests the wavelet like activation function. One shows in
Fig. 1, where are depicted a measured signal in time domain

and its windowed Fourier transform respectively, how the data Sik(t) =P(t)sin[(2k +1) 2(Ti + Tit1) (t =l

Wit)sin[(2k + 1) =—=(t —a;)] (8)

(t—ai)]. (9)

4.1 Choosing the Best Family Regressor

(10)



0.15

One is already remarked that one is talking about truncated
indices, thus finite libraries of wavelet packets. Here pia-
midal packet is represented with the indidgs j, n), d is the
level of the tree (scaling parametef)s the frequency cell (os-
cillation parameter) and the time cell (localization parame-
ter).

The function 4, ; ) (t) = ¥;(2% — n) is roughly centered
at2~%n, has support of sizes 2~ and oscillatess ;.

Taking a basis with cells on different level of the tree one
obtains a nonorthogonal basis (frames): the symmetry of the
windows is lost but not their derivability, they are sums of the
o o e o T o o derivable functions. In the other words, taking basis elements
Time (sec) on different levels of the tree which cover the real aRisne
015 : : : : : : : is considering superpositions of bases with different resolution
frequency cells, the orthogonality is lost. Our algorithm will
work transversally on the wavelet packet tree without any
restriction in order to use all the possible combinations of
the bases, all the possible frames. Once selected the family
regressor, for instance the truncated sine/cosine wavelets, the
(d, j,n) parameterized family:

(R} -

{ftim D0y (@A) € Z,j €Nt € R

0.1r

-0.05-

-0.1r

-0.15

I I I I I I I
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Time (sec) should contain a finite number of wavelets, as less as possible,

so that the regressor selection procedure can be efficiently
Figure 2: In Top: Biorthogonal smooth local sine and cosin@PPlied. Given an approximating wavelet library not all the
functionS 5, 5) () andC, 2 (). In Bottom: Adjacent (orthog- wavelet functions are useful, normally only a small number of

onal) cosine waveforms with smooth windd@, ) (t) and the coefficients are important, the other ones can be neglected.
Cla (1) ’ In general one can select the candidate library as follows:

(R} -

where . s .
1 {w(dm) (8984 () (d,j,n) € TLUT> U e U ZK}
Pty = (W2t + Wi (12
(®) ~/2(7;+72+1)( B+ Weia ) with K = 1,2....... and
is a 'window’ function covering the intervadl U I;; . I = {(daja n) [ Yiajmlle > €1 mlle > 6}7 (13)

In Fig. 2 one is depicted the sine and cosine biorthogonal
functions in the time domain, where one is built the functiongheree is a chosen small positive number. In this way the
with the prototype cutofiA(t) like a sine function. ‘empty’ wavelets are eliminated from the wavelet frame. In
It easy to see how the time and frequency cells are linke®ther words one is starting from a regular tree packet (library)
in a dyadic way, this sort of analysis is equivalent to wavelednd one selects only those which their support hit our training
packet analysis which allows us to perform an adapted Fouri@@ta. This method is called by some autheesselet shrink-
windowing directly in the time domain. The wavelet packefge[2]. One will show that with very few bases of the local
library is constructed by iterating the wavelet algorithm. trigonometric functions one can obtain a good function detec-
From now on and in order to formally define thigrary of ~ tor.
wavelet packetene will consider a new index notation.

5 Mathematical Details

Definition 3 Let a library of wavelet packets be the collection_ et e ) .
of functions of the form Re = {¢(d,j,n)(t)7 (d,n)€Z,jeNte 9?}
and
Dia gy (t) = ;2% —n) (11)
where(d,n) € Z andj € N. Rs = {wfd,j,n) (t);(d,n) € Z,j €Nt € %}



be the truncated cosine and sine packet frames respectively

as defined in [8], an& o (¢) the real row signal.

0. Define the initial conditiony,
Y ()

0) (t) = 7s(0) (t) =
=d andf,,(t) = 0, fs, (t) = 0. Fixed an M index then

Begin-loop
1.Fori=1,2,..M.
Calculate the weightg,,;,,.), S(a,j,») On all cosine and sine
wavelet packet trees according the index:

j(c(d,j,n)vs(dvj:n))

= (Y(iq)(t) - Z C(dj,n)¥(a,j,n) (E)— (14)
(d,j,n)ER.
. 2
> S(d,j,nW(d,j,n)(t))’
(d,j,n)ER,
this yields:
2(dgmer. e (£ ¥ 0y (D)
c(d,j,n) - ( 9 (_1) )7 (15)
(E(d,j,n)ERc (wt(:d,j,n) (t)) )
> d,j,n RS<7S i1y (), in (t))
Sy = (SRR I ) (1)

(=1)
(E(d,jm)eRs ({a5.m) (t))z)

wherey.,_,, (t) andys,_,, (t)
stage(i — 1).

are the residual signal of the

2. Let

»

(Vei—1) (1)
P (’Yc(i—1) (t))

Jin(

). an

(d.j.n)
__ oy POy ®)y Pl ()
ne (d,zj;z)(P(%u—l)(t)))l (P(vsu_l)(t)))' (18)
arg(gaig(llvcll)) = {lecam}
and

{lS(d,]‘,n)}

with (d,j,n) € {R,} and with(d, j,n) € {R_}.

arg(max(||Vsl])) =
g({Rs}(H 1))
3. Let
V(cross):

75(%(1'—1)(’5))
P (Yei_1y (1))

IO

P
P
)i (5
P
(d,j,n)ER. (d,j,n)ERs
Py

)
Vs (i= 1)(t)) )
P (v (®)

Ysi—1)(t)

arg( max (V(cross))) =

{Rc,Rs} {lc(dvj>")’ls(d.j,n)}

with the true probabilityP (ve(;—1)(t)) = [17e(i—1) (@I
and the estimated probability is calcuated as

75(’)/@(1'_1)(75)) - || Z d,j,n)ER. C(d,j, n)( )1/)( d,j,n) ( )||2
In the same waP (ys(;_1) (t))
= || Z(d,j,n)eRs
Ye(t),

= ||7s(i_1)(t)||2 and the

75(%(2'71) (t))

4. Updatef.(¢),

S(d.jn) (D) V(g,j,n) () 2.

£ (1) andy, (t):

f(:i (t) = fC(ifl) (t) + Z cl“(d,j,n) Q/ch(d,j,n) (t)
[cER.
fort) = £ony (1) + Z szs(d.j,")1/}l83(d i) (®);
ls ER, 7
(d,j,n)
Yei(t) = Ye(i=1)(t) > Clegy sy D0y ();
c(ajm) ERe
'Ysi(t) 73(1_1)( ) Z s(djn)( )¢ls(d1n)( )
ls ER.
(d,j,n)
Yi(t) = Y(_1)(t) — £, (t) — £, ()
End Loop.

6 Simulations and Results

The case which we present consists of a harmonic signal as
presented in the previous sections. As said, this case justi-
fies the choice of the trigonometric bases in order to perform a
coherent and an incoherent expansion. We simulated a white
Gaussian noise in superposition performed from 0 Hz to 250
Hz. How it is possible to see from the Fig. 3 we can recon-
struct the original signal with a good precision. The considered
dyadic signal belongs to the spake'?, after thedata shrink-
agethe compression is performed and we obtain a dyadic vec-
tor belonging to the spadg®. In other words we can just con-
sider 8 frequencies [0, 50, 100, 150, 200, 250, 300, 350] Hz
for every time frequency cell. The selected wavelet packet tree
has three levels and considering the Nyquist frequency of data
equal to 3500 Hz and the length of the basis equal to 512 sam-
ples we obtain a resolution around 3.5 Hz, 7 Hz and 14 Hz
respectively.

ol
20ne recalls that the resolutidR = NfTZ whereN is the length of the
basis/ the level of the tree andV; the Nyquist frequency
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7 Conclusions

We have described an algorithm for simultaneously suppress-
ing the additive white Gaussian noise component and com-
pressing the signal component in a data set. The bases in
the library consist of wavelets, more precisely they consist
of wavelet packets where the functions are local trigonomet-
ric bases. Cosine and sine bases with their biorthogonality al-
low to perform an efficient system coordinate. The bases are
selected during every step by maximizing the cross entropy
function which illuminates the difference between the noise
and the desired signal. An example is reported to shown the
applicability and usefulness of the algorithm.
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