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ABSTRACT
Analyzing user behavior in electronic textbooks offers
appealing insights into how pupils interact with the book
and internalize the content. Using these insights may help
to personalize the book, e.g., to support users with special
educational needs. Conventional approaches often focus on
atomic, user-triggered events like clicks or scrolls. In this
paper, we propose to view all ongoing sessions in a classroom
simultaneously and cast the problem as a multi-user problem
over space and time. We devise two distance measures
to compare the navigation behavior of pupils in different
dimensions. Empirically, we observe that our metrics lead
to interpretable clusters and serve as performance indicators.
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1. INTRODUCTION
The advent of information and communication technologies
(ICT) in education has given teachers and educators a magic
box full of possibilities [21]. Learning can now be made
interactive and engaging for students. The digitization
movement has further expanded with MOOCs [18, 10] that
provide easy access to extensive and high quality courses
online. Situated in-between traditional classrooms and
online MOOCs, are electronic textbooks.

E-books incorporate the benefits of both traditionally
printed copies and online media. Their structure closely
resembles real books, thus rendering a look and feel
familiar to students and teachers alike. Additionally, they
often include interactive objects (hyperlinks, text boxes
for comments) and interlinked media types to enhance the
learning experience and delineate content better. Teachers
can easily integrate the new technology in their classroom
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as they offer the full bandwidth, from traditional reading to
creative exploring tasks. In addition, electronic books are
usually designed to be self-contained and prevent the risk of
students being lost in large amounts of content.

This work is part of a project that aims to evaluate the
effectiveness of electronic textbooks as learning tools. Our
study is based on a collaboration with psychologists and
educators. The premise is an electronic text book called
the ’mBook’ [27, 28] that has been written and developed
by a team of history teachers and didacticians. It is being
deployed in the German-speaking community of Belgium
since 2013.

The mBook records all user-triggered events like clicks
and scroll operations such that every session can be
replayed entirely. Quantities like the visible content at each
timestamp can be derived straight forwardly from this data.
We aim to use this information to identify usage patterns in
the behavior of the pupils and analyze how they reflect on
their performances.

Extracting patterns from log files has been a widely
researched topic. Usual techniques range from Behavioral
Sequential Analysis [2, 31, 9] to mixtures of Markov
chains [6, 7, 15, 8]. However, all these methods are based
on event transitions and do not consider historical events
or past data. Higher-order Markov chains could possibly
handle longer sequences that condition these transitions.
Nevertheless, the computation becomes rapidly intractable.

The approach we choose here is to literally extend the
navigation metaphor and build a structure to handle sessions
as is they were spatio-temporal trajectories. For this
purpose, we first extend the shortest path distance in a graph
to handle extra events like the loss of focus. Secondly, we
build a distance metric to compare trajectories independent
of their length and duration. This measure is especially
built for our use-case since it not only measures extent of
difference between topics studied by two users, but also
quantifies the differences in their navigation behavior. Such
diverse aspects cannot be fully captured by traditional
approaches that rely on simple statistics like the number
of pages viewed. Additionally, by comparing navigation
patterns between classmates, we characterize teaching style
and detect outliers or specific learning patterns.

The rest of the paper is structured as follows. In Section



2, we briefly introduce the mBook project. Notations and
concepts necessary for the construction of the distance are
presented in Section 3. We also review existing distance
metrics based on three properties that a trajectory distance
should satisfy, to successfully capture pupils’ navigation
patterns. Our page and trajectory distances are built in
Section 4. In Section 5.1, the clustering qualities of our
contribution are highlighted. Finally, in Section 5.2, we
study how behavior patterns influence pupils performances
and depend on the teaching style.

2. MBOOK
The mBook [27] is an electronic textbook for history,
developed for students from grades 6 to 9. It is a part of a
project regrouping didacticians, psychologist and computer
scientists to study the influence of ICT on pupils and
teaching staff. The ebook itself is a website based on a
Typo3 environment so that it can be used independently
of the device. However, tablets are the predominant device
in most classrooms. The primary organization of the book
is in the form of web-pages, grouped to represent different
chapters/content. The book has 5 chapters that cover
Antiquity, Middle Age, Renaissance, 19th Century, and the
20th and 21st Centuries. It also has an additional chapter
on methods.

Figure 1: Screenshot of the mBook.

Content types cover five main components: text, galleries,
audios or videos, information areas and a navigation bar.
The primary content is in the form of text. A student can
add notes to the text or highlight parts of it. Galleries
comprise of pictures related to the text. Some audio or
video files are directly integrated to the web-page and can
be visualized from there. Information areas below the text
provide additional information, beyond what is assigned for
the chapter. These are usually organized in boxes that can
be opened and accessed with a click/keypress event. Finally,
the navigation bar at the bottom of the page allows the
student to traverse sections and create highlights or notes.
The section traversals include moving to either the previous,
current or next section pages. In total, there are 738 pages,
including 478 galleries and 537 exercises. Every page is
assigned a unique identifier.

Since its deployment, the mBook was used by about
3,000 students in seven schools of the German-speaking
community of Belgium. Since 2013, approximately 40,000
sessions were initiated and more than 7 million events
(clicks, scrolls, key press, etc.) were tracked.

The project overseeing the deployment of the ebook also
organized standardized tests at the end of each academic
year. Based on these tests, the competency and knowledge
of the pupils in history was regularly assessed using a Rasch
model [23]. Additional variables like motivation, IT access
and IT skill were obtained by questionnaires and MCQ tests.

3. PRELIMINARIES
In this section, we introduce notation and concepts that will
become handy in sections to follow.

3.1 Notations
We begin with formally introducing trajectories.

Definition 1 (Trajectory). Let Ω be a set. A
trajectory X = (xi, ti)0≤i≤N on Ω is a sequence of points
xi of Ω and of time-stamps ti counted relative to t0 such
that ti ≤ ti+1. The length of the trajectory X is N + 1 and
its duration is tN .

When the time component is not relevant, the ti will be
omitted. To ease legibility, a sequence (xi)0≤i≤N will be
abbreviated (xi)N whenever the context allows.
Trajectories are essentially time-series of spatial points. In
order to later have a notion of similarity between two
trajectories, one needs to have a notion of distance between
two points. A sequence of elements of Ω is an element of
the power set of Ω. Thus, we give an abstract definition of
a distance that could then be used for points or sequences
of points.

Definition 2 (Distance). Let Ω be a set. The
function d : Ω × Ω → R is called a distance if it satisfies
these properties for any elements x, y, z ∈ Ω:

• ∆(x, x) = 0,

• Non-negativity: ∆(x, y) ≥ 0,

• Symmetry: ∆(x, y) = ∆(y, x).



It is a metric if it also satisfies:

• Identity of indiscernibles: ∆(x, y) = 0⇔ x = y,

• Triangle inequality: ∆(x, z) ≤ ∆(x, y) + ∆(y, z).

In the following, we will prefer the notion of distance
which is less restrictive than a metric. However, the
distinction can be crucial to some clustering algorithms
such as DBSCAN [12, 19] or k-medoids [17, 3] that assume
the triangle inequality holds and thus require a metric
between points. Other approaches like k-means and many
hierarchical clustering methods [24] work well with non-
metric distances. One exception is Ward’s method [30] that
is even more restrictive and relies on Euclidean distance.
Since every metric is also a distance, in the remainder,
we denote generic distances between points and trajectories
using d and ∆ respectively.

3.2 Requirements
The aim of the work is to regroup pupils trajectories of
various durations, within the mBook. This grouping should
depend on the visited pages and be independent of session
start. Additionally, we would like similar behaviors to be
regrouped together. This can be controlled by enforcing the
distance to satisfy certain properties.

P1: If Y last longer than X, for any truncation Y ′ of Y
lasting longer than X, ∆(X,Y ′) = ∆(X,Y ).

P2: If X ′ and Y ′ go through the same sequence of points as
X and Y but slower (or faster), ∆(X,Y ) = ∆(X ′, Y ′).

P3: If X and Y are loops, i.e. they start and end at
the same point, their n-iterations are denoted as Xn

and Y n. If X and Y have the same duration, then
∆(Xn, Y n) = ∆(X,Y ).

To motivate these three properties, we will make use of
an analogy using a track and field race. Let X and Y
be competing athletes and ∆ an observer measuring the
distance between the runners. Once one of the athletes
finishes the race or gives up, the competition ends and
∆ cannot make any further measurements. This is what
property P1 encloses.
Now suppose that two other competitors X ′ and Y ′ perform
exactly like the previous ones, but they run at half the speed
of X and Y . ∆ would make the same observations as above,
relative to the total duration of the race. Hence, as stated
in P2, we require that ∆(X,Y ) = ∆(X ′, Y ′).
To illustrate P3, X and Y finish the first lap in the same
time. They continue similarly for the remaining laps.Thus,
the information ∆ extracts is the same for every lap. In
other words, as stated in P3, ∆(Xn, Y n) = ∆(X,Y ).

The first property P1 implies that a trajectory and its
sub-trajectories are considered as equal. Sequences of
different lengths or durations can then have a distance of
0. Consequently, the identity of indiscernibles is prohibited.
Note that property P2 requires that ∆(X,Y ) = ∆(X ′, Y ′),
however in the general case, ∆(X,Y ) 6= ∆(X,Y ′).

3.3 Distances
Distances on trajectories can be split into two groups [5]:
shape-based and warping-based approaches. Warping-based
approaches [4, 29] aim at handling sequences of various
length by finding an alignment that minimizes a cost
function. Dynamic Time Warping (DTW) [4] is often used in
speech recognition tasks, but can be leveraged for any type
of time series. The main limitation of this measure is that
the evaluation algorithm is computationally demanding and
has a time complexity of O(N2) in the length of the longest
trajectory. Approximations have been developed to bring
the complexity to an almost linear asymptote [26] but at
the cost of a lower precision.

Definition 3 (DTW). Given two trajectories X =
(xi)N and Y = (yj)M , dynamic time warping (DTW)
computes an alignment W = (wk)K with the following
properties:

• wk = (xi, yj), 1 ≤ i ≤ N, 1 ≤ j ≤M,

• w1 = (x1, y1),

• wK = (xN , yM ),

• d(wk) = d(xi, yj),

• wk = (xi, yj)⇒ wk+1 ∈

 (xi, yj+1)
(xi+1, yj)

(xi+1, yj+1)

.

Finally the distance between X and Y is then given by:

DTW(X,Y ) = min
W

|W |∑
k=1

d(wk).

The final result is the sum of the distances of the aligned
points. Hence, the value grows with the length of the
trajectories. This prevents DTW from satisfying P1 and
P3. Note that the time-stamps are not considered here.
As a consequence, P2 is naturally satisfied given that the
duration between two points is irrelevant.

Shape-based distances aim at capturing geometric properties
of the trajectories. A representatives of this family are for
example Hausdorff [16], as well as more recent ones like the
One-Way-Distance [20] and the Symmetrized Segment-Path
Distance [5].

Definition 4 (Hausdorff). Given two trajectories
X = (xi)N and Y = (yj)M . The Hausdorff distance is
defined as

HAUS(X,Y ) = max

(
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

)
.

The Hausdorff distance is independent of the timestamps of
the points, hence property P2 is satisfied; the computation
relies only on their distribution. The number of times each
point is visited does however influence the distance. In



particular the situation described by P3 is holds.
A limitation of this measure is that it can be easily deceived
by odd point distributions. Consider the three trajectories
X, Y and Z represented in Figure 2. Although the shapes
are very different, Haus(X,Z) = Haus(Y,Z) = 3.
If the last point of X were removed, Haus(X,Z) would
decrease. This is in contradiction with P1.

Figure 2: Three trajectories on the plane such that
Haus(X,Z) = Haus(Y,Z) = 3. The arrows indicate
the points orders.

The definitions of the One-Way-Distance (OWD) and
Symmetrized Segment-Path Distance (SSPD) require to
define the distance from a point to a trajectory:

Definition 5 (Distance Point-Trajectory). Let x
be a point of Ω and Y = (yj)M be a trajectory. A segment
of Y is a pair of successive points of Y , [yj , yj+1]. The
distance between x and a segment of Y is the shortest
distance between x and any point of the segment:

d(x, [yj , yj + 1] = min
τ∈[0,1]

(d(x, yjτ + (1− τ)yj+1))

The distance between x and Y is the shortest distance
between x and the segments of Y :

d(x, Y ) = min
j
d(x, [yj , yj + 1]).

Definition 6 (OWD). The one-way-distance (or
OWD) between two trajectories X = (xi, ti)N and
Y = (yj , t

′
j)M is defined as the integral of the distance from

points of X to trajectory Y divided by the duration of X :

OWD(X;Y ) =
1

tN

∫
x∈X

d(x, Y )dx.

The symmetric OWD is the average of the OWD between X
and Y :

sOWD(X,Y ) =
OWD(X;Y ) +OWD(Y ;X)

2
.

The sOWD is close to the distance we want to build.
Thanks to the normalization with duration, the measure
satisfies P2 and P3. However it is not invariant per
truncation as required by P1. If Y is truncated into Y ′,
the duration of the later is shorter than the former, hence
OWD(Y ′;X) 6= OWD(Y ;X) in general.
Given that Y ′ is said in P1 to last longer
than X, OWD(X;Y ′) = OWD(X;Y ). Yet,
1
2
(OWD(X;Y ′) + OWD(Y ′;X)) is different from

1
2
(OWD(X;Y ) +OWD(Y ;X)) in general.

Definition 7 (SSPD). The Segment-Path Distance,
SPD, between two trajectories X = (xi)N and Y = (yj)M is
:

SPD(X;Y ) =
1

N + 1

N∑
i=0

d(xi, Y ).

The Symmetric Segment-Path Distance is the average of the
SPD between X and Y :

SSPD(X,Y ) =
SPD(X;Y ) + SPD(Y ;X)

2
.

The distance SSPD is independent of the time indexing,
hence P2 is automatically satisfied. Besides the
normalization by the number of points assure that the
distance between loop trajectories is invariant with the
number of iterations. Thus SSPD complies with P3.
However similarly than for OWD, the Symmetric Segment-
Path Distance does not satisfy P1. Indeed if Y last longer
than X and Y ′ is a truncation Y lasting as well longer
than X, SPD(Y ′;X) 6= SPD(Y ;X) while SPD(X;Y ′) =
SPD(X;Y ). The averages are hence also different.

4. WEB TRAJECTORIES
Consider a website W whose structure is given by the page
graph G = (P, E). We refer to the corresponding web-page
of a node p ∈ P by W(p). That is, a node p ∈ P has a
child p′ ∈ P if users can transfer from page W(p) to W(p′)
by clicking a link or using the navigation bar. In that case
(p, p′) ∈ E holds. A loss of focus happens when the user
turns off the screen of the tablet, or visit another tab. In
order to handle this event, we add a dummy page F to P.
As it can happen anytime, F is connected to all the other
pages.

A session on W can be represented as a sequence of
pairs P = (pi, ti)0≤i<l, where a user views page W(pi)
at timestamp ti. For simplicity, we represent timestamps
relatively to t0, to retain the elapsed time on page and site.
To call P a trajectory, we need to define a metric between
its points.

4.1 Distances between pages
A natural distance measure for pages is the shortest path
between the corresponding nodes in the underlying graph
G. However, the auxiliary state F needs to be appropriately
incorporated to allow for a meaningful application of a
shortest path algorithm. Despite being connected to all the
pages, we thus set the distance between F and any other
page p to dF ∈ R+ such that

max
p,q∈P

ShortestPath(p, q) < dF.

We motivate this choice by the fact that we want the
clustering algorithm to consider a loss of focus as a special
state. By making it very costly with respect to the other
costs, we favor clusters of sessions that frequently visit F .

Definition 8 (Page Distance).
The distance d between two pages p, q ∈ P is defined



as follows.

d (p, q) =

 ShortestPath(p, q) , if p 6= F and q 6= F
dF , if p 6= F and q = F
0 , if p = F and q = F

This page distance now allows the comparison of points
inside a page graph and can be used by existing measures
comparing trajectories. In order to assure that its usage does
not remove the distance properties out of these measures, d
needs to be a distance as well.

Lemma 1. The functions d : P ×P → R is a metric.

Proof. Non-negativity, symmetry and the identity of
indiscernibles directly apply from the ShortestPath which
is a metric on P \F .
Let us prove the triangle inequality, i.e for p, q, s in P:
d(p, r) ≤ d(p, q) + d(q, r)

• If r = F and q = F , d(F, F ) = 0.

• If r = F and q 6= F , per non-negativity of d:
d(p, F ) ≤ dF ≤ d(p, q) + dF = d(p, q) + d(q, r)

• If none of the pages is F , then d is simply the
ShortestPath, which satisfies the triangle inequality.

4.2 Distances between trajectories
Following Definition 1, sessions can now be viewed as
trajectories, more precisely web trajectories. In opposition
to spatial trajectories, the position of a web trajectory
between two timestamps does not evolve. Hence the position
at any timestamp is precisely the one of the most recent
point. We define the cross-product C of two trajectories X
and Y to keep track the positions changes of X and Y .

Definition 9 (Cross-product). Let X = (xi, ti)N
and Y = (yj , t

′
j)M ) be two trajectories such that tN ≤

tM . The cross-product of X and Y is the sequence C =
C(X,Y ) = (ck)K = (t̄k, x̄k, ȳk)0≤k≤K defined as follows:

• t̄k ∈ {ti, 0 ≤ i < N} ∪ {t′j , 0 ≤ j < M and t′j ≤ tN}

• c0 = (0, x0, y0),

• For 0 ≤ k < K + 1, ck = (t̄k, x̄k, ȳk),
with x̄k = xi such that ti ≤ t̄k < ti+1,
and ȳk = yj such that t′j ≤ t̄k < t′j+1,

• cK = (tN , xN , yj) such that t′j ≤ t̄N < t′j+1.

Now we devise a distance ∆ for web-trajectories. ∆ is
defined as the normalized area spanned between them until
the shortest one ends.

Definition 10 (Trajectory Distance). Let X =
(xi, ti)N , Y = (yj , t

′
j)M ) be two trajectories and C =

(t̄k, x̄k, ȳk)K their cross product:

∆(X,Y ) =
1

tN

K∑
k=1

d(x̄k−1, ȳk−1)(t̄k+1 − t̄k)

In Section 3, we formulated three requirements for trajectory
distances to assure certain properties in the clustering. The
fact that none of the reviewed distances fulfills all of them,
motivated the construction of ∆. We will now prove that
our distance complies with the three conditions.

Lemma 2. The function ∆ defined on pairs of web-
trajectories satisfies the three properties P1, P2 and P3.

Proof. Let X = (xi, ti)N and Y = (yj , t
′
j)M be two

trajectories and C = (t̄k, x̄k, ȳk)0≤k≤K their cross product.
We suppose that Y last longer: tN ≤ t′M . Let us prove that
each property is satisfied.

P1: The distance ∆ depends only on the cross product of
the two trajectories. Per construction, the cross-product
contains only the points happening before that the shortest
one ends, here X.
Hence for any truncation Y ′ = (yj , t

′
j)0≤j<M′+1 of Y such

that M ′ < M and tN ≤ t′M′ , C(X ′, Y ) = C(X,Y ). This
implies ∆(X,Y ′) = ∆(X,Y ).

P2: For λ > 1, X ′ and Y ′ travel the same path than
X and Y but λ times slower means that X ′ = (xi, λti)N
and Y ′ = (yj , λt

′
j)M ). Their cross product is C′ =

(λt̄k, x̄k, ȳk)0≤k<K+1.

∆(X ′, Y ′) =
1

λtN

∑K
k=1 d(x̄k−1, ȳk−1)(λt̄k+1 − λt̄k)

=
λ

λtN

∑K
k=1 d(x̄k−1, ȳk−1)(t̄k+1 − t̄k)

∆(X ′, Y ′) = ∆(X,Y )

P3: We will prove this property for n = 2, but it can be
extended for any value. In this case X is a loop, i.e. x0 =
xN , and tN = t′M . A trajectory X2 traveling two times
through X is of duration 2tN and does not visit twice the
initial position, i.e.

X2 = (xi, ti)0≤i≤N ∪ (xi, ti + tN )1≤i≤N .

In turn, C(X2, Y 2) = (t̄k, x̄k, ȳk)K ∪ (t̄k + t̄K , x̄k, ȳk)1≤k≤K .
Hence:

∆(X2, Y 2) =
1

2tN

(∑K
k=0 d(x̄k−1, ȳk−1)(t̄k+1 − t̄k)

+d(x̄K , ȳK)(t̄K + (t̄1 + tN ))

+
∑K
k=1 d(x̄k−1, ȳk−1)((t̄k+1 + tN )− (t̄k + tN ))

)
Given that tN = t′M and that X and Y are loops, x̄K =
xN = x0, ȳK = yN = y0 and t̄K = tN . Besides following
Definition 9 t̄0 = 0. Consequently ,

d(x̄K , ȳK)(t̄K + (t̄1 + tN )) = d(x̄0, ȳ0)(t̄0 + t̄1)



. This term can hence be integrated inside the second sum,
such that we have:

∆(X2, Y 2) =
1

2tN

(∑K
k=0 d(x̄k−1, ȳk−1)(t̄k+1 − t̄k)

+
∑K
k=0 d(x̄k−1, ȳk−1)(t̄k+1 − t̄k)

)
=

1

2tN

(
2
∑K
k=0 d(x̄k−1, ȳk−1)(t̄k+1 − t̄k)

)
∆(X2, Y 2) = ∆(X,Y )

Algorithm 1: ∆(X,Y )

∆← 0;
T ← min(tN , t

′
M );

Initialize a list C with (0, x0, y0)
foreach (ti, xi) in X with i > 0 and ti ≤ T do

Append (ti, xi, NAN) to C;
end
foreach (t′j , yj) in Y with j > 0 and t′j ≤ T do

Append (t′j , NAN, yj) to C;
end
Sort C accordingly to the first column;
K ← length of C;
for 1 ≤ k ≤ K do

Ck−1 = (tk−1, xk1 , yk−1);
Ck = (tk, xk, yk);
∆← ∆ + d(xk−1, yk−1)(tk − tk−1)
if xk is NAN then

xk ← xk−1;
end
if yk is NAN then

yk ← yk−1;
end

end
Return ∆/T ;

Algorithm 1 describes an efficient way to compute ∆.
Firstly, the distance ∆ initialized to 0 and the shortest
duration T is retrieved. The cross product C is a list of
triplets : (tk, xk, yk). The first coordinate indicates the
timestamps, the two others the positions of X and Y at
this time. The first tuple gives the initial positions of the
two trajectories. Then all the positions of X and Y with a
timestamp smaller or equal than T are included in C where
the position of Y or X is set respectively as unknown. After
that C is sorted accordingly to the timestamps.
Finally C is browsed starting from the second element ; ∆ is
updated accordingly to Definition 10 ; the missing positions
are assigned using the last known positions.
Note that if X and Y have points with the same timestamp,
C will contains tuples with the same timestamp. It is not
problematic as they will cancel out each other during the
update of ∆.
The time complexity of Algorithm 1 is O (N +M). It
derives its efficiency from the fact that the assignments of
the missing positions in C and the updates of ∆ are done in
the same loop.

4.3 Example
This section gives an example for the computation of the
distance measure ∆. Consider the graph that is displayed
in Figure 3. On the left, two trajectories are represented on

Figure 3: Trajectories on the page graph (left) and
as timeseries (right). Edges between F and the other
pages are not shown for legibility.

the page graph. Arrows represent a click that causes a page
change. After vising page C, P loses the focus during one
time unit. On the right, the progression of the trajectories
over time is represented. The x-axis represents time and
the y-axis the pages. The distance between P and Q is
computed as follows.

∆(P,Q) = 1
6

[d(H,H) + d(A,H) + d(C,B) ∗ 2
+d(F,E) + d(C,E)]

∆(P,Q) = 1
6

[0 + 1 + 3 ∗ 2 + dF + 4]

∆(P,Q) =
11 + dF

6

5. EMPIRICAL RESULTS
5.1 Clustering
In this section, we report on clustering results that are
obtained by using Hausdorff, DTW and the proposed ∆
distances. We use K-means [24] as the underlying clustering
algorithm. The distance of a trajectory to a cluster is the
average distance between the trajectory and all the sessions
in the cluster. We repeat every experiment 50 times and
report on the best result for every measure.

The requirements stated in Section 3 aim to promote
groupings of sessions that share long subsequences of viewed
pages. To highlight the consequences of these choice, we
restrict the data to only a single day. The subset contains
41 sessions from 37 users with an average duration of
32 minutes. The small scale allows for an interpretable
analysis of the resulting clusterings. However, note that the
computational complexity of DTW and Hausdorff quickly
become infeasible with more data: The computation of
the upper triangle of the DTW distance matrices using [4]
requires more than 6 hours.

Although the sessions do not contain information about
teachers, we will still evaluate the clusterings based on their
similarity with the teachers’ groupings. They should not
be very different. Indeed, during one class, pupils tend to
worked on the same subject. Thus, we expect them to be
clustered together.
The teacher ID of the pupils behind session are represented
by the y-axis of Figure 4.a. The connection times (x-axis)
show six different classes. An analysis of the session logs
shows that the closest classes in terms of topic and thus also



Figure 4: Teacher and cluster assignments of each sessions.

in terms of distance in the web-site graph are the ones of
teacher 1 and 3, who dedicated all their lessons of this day to
Alexander the Great and to the Roman Empire respectively.
During a single class, teacher 2 focused on the situation of
Belgium during WWII. The group of teacher 4 learned about
the Reformation.

Two settings are evaluated. In the first one the number
of clusters K is fixed to the number of teachers, that is
K = 4. In the second experiment, K is chosen an order
of magnitude higher to give the algorithm enough degrees
of freedom to return the optimal amount of clusters for
every measure. The returned clusters in this last setting
are plotted in Figures 4.b to d. The final number of clusters
found by each method and the homogeneity scores [25] of the
clustering relatively to the teachers’ distribution are given in
Table 1. A homogeneity score of 1 indicates that no cluster
contains sessions from multiple teachers.

Table 1: Number of clusters and homogeneities in
the case of constrained or unconstrained clusterings.

K=4 K=20
Distance # Cl. Homog. # Cl. Homog.
Hausdorff 4 0.14 8 0.39

DTW 4 0.67 9 0.97
∆ 4 0.87 10 0.97

In both settings, the Hausdorff distance performs poorly. As
shown in Figure 4.b, it fails at detecting class behaviors.
The first cluster is spread all over the day, despite that
each class studied different sections. By contrast, ∆’s
high homogeneities indicates that our proposed distance
successfully detects the topics. Even when K is fixed to
4, ∆ outperforms DTW and made few clustering errors. For
K = 20, DTW and ∆ create enough clusters such that all
of them are pure with respect to the teacher, except for one
session that is wrongly assigned in a cluster with sessions
from another teacher. Interestingly for both distances, this
mistake happens in a group of two sessions. DTW groups
two sessions from teacher 1 and teacher 4 together, while ∆
mistakenly associates a session from teacher 2 with a session

from teacher 3, respectively.

For K = 20, the main difference between DTW and ∆ is how
they handle teacher 4. While DTW aims to group sessions
associated with teacher 4 together, our distance measure
splits them into two clusters. The trajectories of each cluster
for each measure are shown in Figure 5. The pages are
organized per chapter.

DTW detects the topic well as all the sessions dealing with
Renaissance are grouped together. Cluster 3 in Figure 5.a
is actually the DTW’s cluster that is made only of two
sessions from two different teachers. It is not clear why this
artifact occurs. By contrast, our distance measure creates
two groups out of all trajectories visiting the Renaissance’s
chapter. Cluster 8 shown in Figure 5.c contains those
sessions that navigate more or less directly to the page about
the Reformation and then stay on that page until the session
is terminated. Sessions with more irregular trajectories are
put into cluster 9. Thus, in addition to the topic, the shape
of the trajectories is also a determining factor for ∆-based
clusterings.

This section showed that pupils may exhibit very different
types of behavior during the same class and that our distance
measure performs well in detecting these behaviors. The
next section investigates how the behaviors relate to the
pupils performance in the class.

5.2 Assessments
In this section, we study the relation between the expressed
behavior and the pupil’s scores described in Section 2.

The activity of a user during one session can be measured
through statistics like the ’number of pages seen per minute’
(PPM) or the ’number of events per minute’ (EPM). The
average distance between a pupil’s session and the other
class sessions indicates how much the pupil’s usage diverges
from the group’s.
However, these values can not be used to compare the
activity between classes. Indeed, in a class with an average



Figure 5: Trajectories of clusters obtained using DTW and ∆ associated to the class of teacher 4.

of one page view per minute, a user viewing one page per
minute will be considered as regular. However if the average
of the class was 3, the same user would appear too inactive.
Hence, these quantities need to be expressed relative to the
average value of each class.
The average distance between trajectories of a class, also
called the intra-class distance, is denoted as Ψ. The average
distance of session P to the other class trajectories, also
called divergence of the session, is denoted as ψ(P ).

We extract 400 class-sessions between February and July
2017, under the supervision of two teachers in two different
schools. A class-session happens between 08:00 and 16:00
and contains at least five sessions from pupils with the same
teacher that all start within 10 minutes. Table 3 contains the
number of classes, sessions associated to the teacher, as well
as the number of pupils. The average intra-class distance
of the teachers’ classes are given in the last column with
standard deviations. Correlations between the measures
and the pupils’ scores are reported in Table 2. Pearson’s
correlations with a p-value smaller than 5% are marked in
bold face. The displayed numbers indicate that the two
groups show different behavior and that the teachers apply
different teaching styles.

Table 2 suggests that while the three indicators correlate
with the pupils competencies, they do so in different
directions. For instance, pupils that possess a higher ψ,
visit more pages per minute or interact more than the other
pupils, during the same class. These pupils of teacher A
perform better at the competency test. The opposite holds
for the pupils of teacher B.
These differences can be interpreted only if put in the
context of the average intra-class distances, given in Table 3.
A Mann-Whitney U test [22, 13] between the Ψ of the two
teachers’ classes returns a U-value of 85 ( < 87 critical) and
a one-sided p-value of 0.02. Thus, we can state that the
pupils in teacher B’s classes have more definite trajectories.

And pupils who diverge from the predominant path tend to
perform worst. To the contrary, the worst performing pupils
of teacher A, whose classes present in average a bigger Ψ,
are those that under-use the textbook.

The fact that all the indicators correlate with competency
could mistakenly be interpreted as redundancy. However,
we observe cases where only ψ is significant. For example,
a small ψ correlates with high motivation in group A. This
is remarkable, since it presents a correlation in the opposite
direction of competency.
In the case of teacher B, pupils with low ψ perform better
at the competency tests but also possess higher skills in
information and communication technologies compared to
their classmates. Indeed, among teacher B’s pupils, the
Pearson coefficient between these two scores indicate a
correlation (0.399, p-value 0.0002); PPM and EPM fail to
capture this effect.

In addition to the classical PPM and EMP, ψ appears to
be a good indicator of the pupils’ performances. Besides,
it captures relations that are hidden to PPM and EMP and
that are independent of connections between different scores.

6. DISCUSSION
In this paper, we focus on methods to extract diverse
usage patterns of an e-book, through analysis of spatio-
temporal, web-log trajectories. While conventional methods
focus on individual events like page-clicks or scrolls, we
extract and analyze trajectories within a web-page as a
whole. To achieve this, we propose to embed the structure
of electronic textbooks into graphs. Once pages of the
ebook are associated with nodes in the graph, shortest
path algorithms can be applied to compute distances
between pages. Additionally, we also lift these distances
to entire sessions, by making use of cross-products. The
establishment of the distance metrics facilitates the use of
spatial clustering methods to sessions of possibly unequal



Table 2: Pearson’s correlations and associated p-values for each combination of pupil’s activity indicators and
score.

Teacher A

Competency Knowledge Motivation IT Access IT Skill
r p-value r p-value r p-value r p-value r p-value

ψ 0.179 0.012 0.096 0.182 -0.17 0.017 0.023 0.745 0.092 0.202
PPM 0.145 0.044 0.133 0.064 0.039 0.587 -0.002 0.979 0.019 0.789
EPM 0.185 0.009 0.156 0.03 -0.065 0.37 -0.022 0.761 0.063 0.381

Teacher B

Competency Knowledge Motivation IT Access IT Skill
r p-value r p-value r p-value r p-value r p-value

ψ -0.224 0.047 -0.165 0.146 0.096 0.402 -0.069 0.547 -0.357 0.001
PPM -0.232 0.039 0.049 0.671 0.111 0.331 0.188 0.097 -0.156 0.171
EPM -0.232 0.04 -0.141 0.216 -0.142 0.212 0.081 0.481 0.059 0.604

Table 3: Summary of the analyzed classes.
#Class #Sessions #Pupils Ψ

Teacher A 27 200 48 5.76 ( 1.41 )
Teacher B 11 80 22 4.48 ( 1.61 )

length.

Empirically, we show that pupils exhibit very different types
of behavior during the same class; the proposed distance
measure outperforms baseline measures in grouping and
detecting these behaviors. Moreover, in another experiment,
we show that our distance measure differentiates between
teaching styles and facilitates comparison between user
behavior and user competence. The average dissimilarity
between sessions during a class can thus be turned
into an effective indicator of pupil performance and
teaching technique. This study thus facilitates a thorough
understanding of the effectiveness of e-books, in a classroom
setup.

The empirical success of the proposed distance metric
establishes it as a useful tool to analyze learning and
teaching behaviour in a classroom. We thus hope to further
extend these experiments to detect more complex learning
patterns, now that a suitable comparison metric has been
developed. For instance, our technique could be extended
to detect ’outliers’ or pupils who completely contravene
typical classroom behaviour. It will further be interesting
to establish correlations between outliers and performance.
This will throw more light on the effectiveness of the
teaching style and the ebook medium.
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