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wavelet packets, wavelet networks, nonparametric regres-
sion. Extracting relevant features from signals or images is an im-
portant process for data analysis. In particular when we are
interested to classifying signals into known categories. We
1 Abstract propose a method for detection and classification of time-
frequency phenomena by using wavelet packets in wavelet
We describe a method to construct orthonormal basis coordifetworks with biorthogonal activation functions. Specifically
nates which maximizes over redundant dictionaries (frames)ve are interested to classify transient harmonics as they oc-
of biorthogonal bases the class separability indexdise  cur in electrical power systems [1, 3]. This literature has
tancesamong classes. The method proposes an algorithnindicated wavelets and wavelet networks as a promising ap-
which consists of biorthogonai expansions over tedun- proach for off line anaIySiS and classification. More, arecent
dant dictionaries In multiclassification problemsmbed- ~ Work in this direction [2] developed an efficient algorithm in
ded classesre often present, we show how the biorthogo_ order to detect and Classify transient harmonic phenomena
na_“ty of the expansion can rea"y heip to construct a coordi-aS inrush currentwhich presents an unimodal distribution.
nate system which characterizes the classes. The algorithrhhis paper tries to extend previous results as in [2], by sev-
is created for training wavelet networks in order to provide eral structural modifications on the training algorithm, to the
an efficient coordinate system maximizing b®ss Entropy ~ class ofembedded phenomewith which, very often, can be
functionbetween two complementary classes. The a|g0rithn'fn0de|ed a classification system. In other words we can think
works with a preliminary extracted features with shrinkage @bout embedded phenomena such as the following structured
technique in order to reduce the dimensionality of the prob-classes.
Iem._ In particular, our a.tterition is poipted out for a.prac,tti- Definition 1 Given a sety of
cal time frequency monitoring, detection and classification~, _ (€1, Cs,
of transients in rail vehicle systems. We want to distinguish
transients agrush currentandno inrush currenand among
them between the two complementary classkasigerous in-
rush currentandno dangerous inrush currenThe proposed

(L + 1) classes of signals:
.......... .Cr, Cc'}, whereL are known classes
andC¢ is the class defined as complement to the dfasdVe
will call the set) a set ofembedded classéfsthe following
relationships hold:

algorithm could be used on line in order to recognize the dan- 1N Ce = {0} @
gerous transients in real time and thus shut-down the vehicle.

We show how, with a limited number of wavelets and with a@nd

few iterations on the compressed data, good and fast perfor- CiNCy ={0}; CLUCy=Cs;

mances are achieved. Simulations using real measured data C3NCy={0}; C3UCy=Cs;

on the vehicle line are included to illustrate and to analyse ©

the effectiveness of the proposed method. Cir—2)NCir—1) ={0}; Cr—2UCr_1) =Cr.



In our specific task the embedded classes could be seen inases allow to perform for each complementary class two or-
the following way: thonormal coordinate basis systems. Wavelet networks seem
LetL=3, andleC; = {No dangerous inrush current} to provide a natural way to attack our problem even though
and we will pose its relative complementary class such aseveral basic issues schould be well satisfied.
C> = {Dangerous inrush current} and thus at the end
Cs = {Inrush current} with its relatiye complementary 51 problem Statement
classCc = {No inrush current}. Obviously one has that
CsNCc = {0} andC; UCy = C3. We want to classify the Let X C o whered, is the number of samples for each
inrush current which for instance has an energy which ex-signal and the dimensionality of theignal space(X) or
ceeds several limits in several particular bands of frequencypattern space which is a subset of the standard d-dimensional
In [2] we showed as, looking for the best basis (Shannonvector space which contains all signals under consideration.
Entropy function) over a dual frame (smooth trigonometric In this case, the dimensionality of the signal space is equiva-
sine/cosine wavelet functions), a dual coordinate system cafent to the length of the signals, we are working with dyadic
be effectively determined using a particular training algo-wavelet packets and thus we will assume thgt= 2"
rithm for wavelet networks. In [2] the task wadetect and  for somen,. As in (1), lety = {Ci,Cs,...,Cr,Cc} be
classify inrush current a set of L known categories or classes afid defined as
In this paper the problem looks a little bit more compli- complement, in general for regression probleyns: R. Let
cated. These kind of phenomena show several difficultiesV; be the number of signals belonging to the clas=. let
to be classified because of their physical characteristics. Inis denote a set of classignals by{x'}",. Now the signal
this sense it is very important the a priory knowledge onclassification problem can be considered as:
the phenomenon in order to choose an appropriated family
regressor for extracting relevant features. This reduces the find a map calledeature extractoff : X — F C R*
dimensionality of the problem without loosing information (normally more than one) with < dy in order to extract
and constructs at the mean time an efficient and discrimi+elevant features.
nat system of coordinate. We want to focus our attention
on one method of selection of coordinate systems through This reduces the dimensionality of the problem under con-
training wavelet networks. We proposed an algorithm whichsideration without loosing important information but improv-
works with biorthogonal wavelet functions and in particular ing the efficiency of the pattern recognition.
we posed our attention over a harmonic detection problem. It is worthwhile to pay attention to the dimensionality
Now, why we are using wavelet packets and their relativeproblem, in order to improve the efficiency of the algo-
biorthogonal families in nonorthogonal libraries ? rithm. Nonparametric estimators soffer from the curse of
We need to define éanguageto describe the signals. dimensionality, the complexity of the estimators grows with
More, we have to seek of optimizing certain criteria depend-the input dimensionafl,. The phenomenon is related to
ing on the particular problem. The language must be as muckhe fact that the sample length is exponential related to the
versatile as possible and as much elastic as possible in ordégngthd, of the input samplet’. In general when the input
to describe various local physical features of émbedded data training are sparse in the input sp&® and only
classes of signalsn the mean time the method must be com- part of this space 'explored’ by the sparce training data
putationally efficient to be practically applied. The wavelet are of interest then the curse of dimensionality is not so
networks provide flexible coordinate systems, their adaptiveheavy. This normally happens in classification problems
time frequency cells are able to capture the features of th@nd modeling of control system where the estimation is
signals in a reasonable computational calculations. Moredone only on the same small portion of the input space.
the nonorthogonal libraries allow more elasticity in order to In order to overcome the curse of dimensionality problem
approximate the training signals, see [4], even though thet is also useful a good choice of the estimator, when the
optimal expansion of a signal in a redundant dictionary ofestimator iscloseto the considered physical phenomenon
waveforms is an NP-complete problem. At the end we wantthen theinformation is concentrated in few dathn our case
to remark that the biorthogonaliy of the frames plays a par-the reduction of the dimensionality is performed in two steps.
ticular role in order to perform an orthogonal coordinate sys-
tem using the well knowiCross Entropy functiomvhich is Step 1:data shrinkagen order to reduce the numbéy;
a measure of the discrepancy between two or more basesf the signals (the sample length).
The algorithm, working on a preliminary compression data
(data shrinkagg builds a basis whichluminatesthe differ- Step 2: compression of the prototype signals resulting
ences among embedded classes. It describes every couglem the training technique with the wavelet network in
of complementary classes with biorthogonal bases in ordeprder to have the time frequency cell basis coordinates.
to perform an orthonormal coordinate system maximizing,
during every step, th€ross Entropy functiorsee section 4. The step 1 allows us to select the most important sub-
In this way complementary phenomena are considered suchpaces in fact, given an approximating wavelet library not
as bimodal phenomena and the biorthogonal approximatingll the wavelet functions are useful but only a small number



of these are important. In particular there are several sets of

signals which don't hit the wavelt support and these can be 300l
eliminated. The step 2 compress the information into the best
time-frequency probability distribution subspaces. 200}

Once the map is built the classification problem could con-
sist of evaluating the Euclidean distance between the pro-
jected fresh signal through the algorithm and the feature co-
ordinate basis vectors (compressed prototypes). In general 0
the recognition problem can be written as a map (generally
nonlinear)g : 7 — Y. The proposed algorithm uses basi- ~100f
cally the best basis paradigm as in [8] or [11] which allows
a rapid search among a large collection of bases (the com- -200] ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
plexity of the calculation i€ (k (log(k))"), wherep is equal C Y e
1 or 2 depending on the basis type, wavelet dictionaries or
trigonometric wavelet dictionaries respectively). Figure 1: Real Signal. Inrush current: time domain. Right:
The paper is organized as follows. In section 3 we discusdnrush current: windowed spectral analysis.
briefly the smooth trigonometric wavelet packets and several
problems connected to the choice of the best regrossor fam-
ily. In section 4 we bresent the algorithm with its mathemat-
ical details. In section 5 we report the achieved results.
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3 Background and Several Issues
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Wavelet transform and wavelet series are becoming popular
in signal processing and numerical analysis. Loosely speak-
ing, a functionf (¢) can be decomposed into
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where they; ,(t) are the wavelet functions, normally ob- 0w 1ég,equen§§f;m) I
tained by dilating and translating a mother functiof),
the index;j andn denote the dilation and translation re- Figyre 2: Real Signal. Inrush current: windowed spectral
spectively andw; ,, is the weight coefficient forp; ,(t). analysis.
The most popular algorithms are related to the orthonormal
wavelet bases, see [7], characterized from fast and elegant
algorithms. There are, besides these, less usedydhelet
frames see [7], for which the computations of the coeffi-  Now, the first question is which function to use like ac-
cients are more Comp”cated but which have certain advantivation function. This is a difficult decision, the collected
tages. As wavelet frames consist of nonorthogonal wavelegXperience on this sense doesn't help too much. All of the
families, they areedundant basesTo be more formal: model structures are capable of approximating any 'reason-
able function’ [7]. Thus the question is pick one that 'suits
Definition 2 A family of functions{¢;,,(¢); (j,n) € Z,t €  the application’, in the sense that only few terms will be
R} in a Hilbert spaceH space is called a frame 6{ if for ~ npeeded. A suitable criterion known in the literature is to
every elemenf(t) € H there are two positive constanfs  select the basis which, once fixed a threshold level, has the
andB such that: minimum number of elements in the selected frame. Now,
. . . having chosen the best family how to choose the size of the
Allf @I < Z (7@, YinI® < BIFOI*. (&) frame subset ? Finally, how we can select the terms of the
S subset ?

Where with (-, -} we have indicated the inner product and
with || - [| the norm. 3.1 Choosing the Best Family Regressor

In this approach we have a drawback, the optimal decomThe case presented in this paper has quasi-harmonic signals
position on a nonorthogonal basis is a NP-complete problenthat change amplitude and phase over time. This latter as-
and we need to stop the algorithm, for instance, with a threshpect suggests the wavelet like activation function. We show
old criterion at the stagefor the £2 norm of the differential  in Fig. 1 and Fig. 2, where are depicted a measured signal
error, we will come back later to the question. in time domain and its windowed Fourier transform respec-
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Figure 3: Organization of local intervals into a binary tree for Figure 4: Organization of local intervals into a binary tree for
smooth local trigonometric wavelet. Orthogonal basis. smooth local trigonometric wavelet. Frame.

tively, how the data are very well concentrated around severaform an orthonormal basis af?(®) subordinate to the par-
frequencies, in this case they are multiple of the fundamentatition ;. The collection of such bases forms a library of
(50 Hz). The picture in Fig. 2 seems to suggest a functionorthonormal bases [10]. We can form a library of orthonor-
with a frequency window and time support. As shown in [2] mal local cosine bases:

a suitable family for this case is the smooth trigonometric 9 .
wavelet packet. We want just to recall several basic aspects  C,; x(t) = —=W;(t)cos[(2k + 1) —
further details in [10]. 2T 27;

We have to remark that taking equal smooth windows
W;(t) (see [10]) then sine/cosine orthogonality can be main-
tained, see Fig. 5 and Fig. 6 where we have depicted the

(t—a)]. (9

Definition 3 Let a library of wavelet packets be the collec-
tion of functions of the form

() = (2% —n 5 sine/cosine bases related to the second level of the packet
Vi (8) = i ) ®) tree with a frequency of 50 Hz.
where(d,n) € Z andj € N. It is easy to check that iH; denotes the space of func-

tions spanned b§; ;, fork = 0,1,2, .... thenH; + H;;, is
We have already remarked that we are talking about trunspanned by
cated indices, thus finite libraries of wavelet packets. Here,
thepyramidalpacket is represented with the indic¢ésj, n),

d is the level of the tree (scaling parametei)is the fre- Sik(t) = P(t)sin[(2k + 1)#@ -w;)], (10)
quency cell (oscillation parameter) andthe time cell (lo- (Ti + Tit1)
calization parameter). where

We consider a cover of the real axis= U‘f’oo Z;, where
Z; = [y, ip1) anday < ajqq. 205y _ 1 2 2

Write T; = a1 — a; = |Z;| and letW;(t) be a window P = V2(Ti + Tiv1) W) + Wi ()
function supported ifr; — %,aiﬂ + %] such that

- is a 'window’ function covering the intervd} U I; ;.
Z W2(t) = 1 (6) Itis necessary to see the connections between the Ioca}llzed
~ trigonometric functions and wavelet packets. If we consider
the frequency linék split as the union oft* = [0, +00)
and andR~ = (—o0,0). On L?(R") we introduce a window
functionW(w) such that

W2(t) =1 - W?(2a41 —t) for t near 1.
(7) >
W2 (2 *w) = 1. 11
These conditions tell how the bell function should be taken k:z—:oo (27w) (D

in order to ensure the orthogonality of the basis, see for in-

stanceLemma 3n [6]. This shows that choosing a basis as  Clearly we can viewV (2 *w) as window function above
in Fig. 3, adiacent function, we abtain a orthonormal basis.the interval(2¥, 2(*+1)) and observe that the functions

On the contrary if we consider bases on different levels of the

tree as in Fig. 4 these don’t form an orthonormal basis

A __ 9k
The functions Sk, (@) = W2 Fw)sin(j + %)”(wg—kz)l (12)
2 . T
Sik(t) = 27;Wi(t)sm[(2k + 1)2_7;(’f —ai)] (8) form an orthogonal basis @ (%*). Similarly
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Figure 5: Adjacent (orthogonal) cosine waveforms with Figure 6: Biorthogonal smooth local sine and cosine function
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P(d,jn)(t) = 1; (2% —n) (14)

1 — 2k
i () = W(Z_kw)cos[(j * _)W(w 2k )] (13) where(d,n) € Zandj € N.

2

gives another orthonormal basis but whose elements are _
not orthogonal to the functions ;. We have already remarked that we are talking about trun-

In order to build the biorthogonal,, ; sine andC;; co-  cated indices, thus finite libraries of wavelet packets. Here,

sine bases we defirf, ; as an odd extension ®of s, ; and  thepyramidalpacketis represented with the indidds;, ),
C;.; as an even extension of ;. In this way we can find d is the level of the tree (scaling paramete)is the fre-

Si; L Cy .« for everyk, j, k' ,j , permitting us to write: quency cell (oscillation parameter) andthe time cell (lo-
’J calization parameter).

. tijrw. - The functiony g ; ) (t) = 1;(2t—n) is roughly centered
Ch.j £ Sk,; = exp ( ok J(w) at2~%n, has support of sizes 2~ and oscillatess j.

To go a little bit more in depth, we suppose that the sig-
wherey(w) is the Fourier transform of the Meyer wavelet nal consists ofV = 2™° dyadic and equally spaced sam-
W defined in [12], further details of this calculation may be ples and the library tree contains all the local trigopnomet-

found in [10]. In Fig. 5 and in Fig. 6 we have depicted the ric analyses to leveN, of the frame, with windows of size

sine and cosine biorthogonal functions in the time domain2™¥o, 2No—1 1. The basis function will be indexed by the
where we have built the functions with the prototype cutoff triplet (d, j,n): if NV is the total number of the samples then
W(t) like a sine function available in [5]. the corresponding samples related todHevelwith relative

It easy to see how the time and frequency cells are linkeddesampling aré&V; = 2¢ and0 < d < Ny, 0 < j < 2No—d,
in a dyadic way, this sort of analysis is equivalent to wavelet0 < n < 2¢.
packet analysis which allows us to perform an adapted The scale parametdigives the number of decompositions
Fourier windowing directly in the time domain. The wavelet of the original signal window into subwindows and the po-
packet library is constructed by iterating the wavelet algo-sition indexn numbers the adjacent window$hus the in-
rithm. It easy to see how the time and frequency cells arformation cell is drawn over the horizontal (time) interval
linked in a dyadic way, this sort of analysis is equivalent I,, = [2No—dp 2No—d( + 1)[. In general, the local trigono-
to wavelet packet analysis which allows us to perform anmetric bases, for instance the cosine basis, for the subspace
adapted Fourier windowing directly in the time domain. The over the time subintervdl, consists of the function with the
wavelet packet library is constructed by iterating the waveletassociated information cell alongside the frequency interval

algorithm. I; = [2%,24(5 + 1)[ on the vertical axis (frequency). The
From now on and in order to formally define thigrary of basis functions have the nominal frequenciegify + 3).
wavelet packetae will consider a new index notation. Each subdivision halves the nominal window width and thus

the resolution level, in particular the resolution level on the
tree could be represented like a collection of rectangles:
Definition 4 Let a library of wavelet packets be the collec-
tion of functions of the form [2No—dp 2No—d(n 4 1)[x[295,2¢(j + 1)[.  (15)



Taking a basis with cells on different level of the tree of ®* and let H be an unitary basis matrix of{, then
we obtain a nonorthogonal basis (frames): the symmetrjthe orthogonal projection matrices @ and onH* are
of the windows is lost but not their derivability, they are P = HH” andQ = I — HH”, respectivaly. It easy to see
sums of the derivable functions. In the other words, takingthat, given anc € H thenPz = z and giveny € H=* then
basis elements on different levels of the tree which coverPy = 0. These properties suggest to perform two orthogo-
the real axisit we are considering superpositions of basesnal subspaces which characterize every two complementary
with different resolution frequency cells, the orthogonality classes choosing among all the possible bases which maxi-
is lost. Our algorithm will work transversally on the wavelet mize the Cross Entropy function. The Cross Entropy func-
packet tree without any restriction in order to use all thetion is a measure of the discrepancy amdndistributions,
possible combinations of the bases, all the possible frames,

Ny o L
Once selected the family regressor, for instance the truncateraorrnally one may tak 2 > pairwise combinations of
sine/cosine wavelets, thd, j, n) parameterized family: this measure. If we cap(!), ......, p() the L distributions
and withD the discrepancy measure then:
{RR,} =
L-1 L
D{{pi}/) = D(p',p’).
{wfd,m(t),wfm,n)(t);(d,n) €Zj€ N,te%} {pe}t) ;J;l (p',p)

should contain a finite number of wavelets, as less asTheadditivefunctionD for two distributionp andq is de-
possible, so that the regressor selection procedure can bed as

efficiently applied. Given an approximating wavelet library Ny Niy

. Pk
not all the wavelet functions are useful, normally only a D(p,q) = E E Pk In (—),
small number of the coefficients are important, the other ko h an

ones can be neglected. In order to explain the constructioq}vhere]\h1 and N, are the number of the element for each
of wavelet network let us start with a regular wavelet lattice. ;555 and the indicdsandh are the internal indices. further
Many wavelets in the regular lattice do not contain any datagetails in 8.

point in their support because of the sparseness of the data.
The training data point don’t provide any information for ) )
determining the coefficients of these empty wavelets, this*-1 Mathematical Details

means that they aré superfluous for the regression estimatiolrrll order to consider and to use the nonorthogonality of the
and ?OUId 'be eliminated. In general we can select theI‘rames which generates an interaction between the elements
candidate library as follows: of the base&the algorithm considers to every step all the ele-
ments of the bases previously selected, without any elimina-
{RC’ RS} - tion, see [4]. Because of the decomposition on a nonorthog-
onal basis is not unique we need to stop the algorithm, for

{lb(cd,j,n) (), ¥{ajn) () : (dsj,m) € LULU....... UIK} instance, with a threshold criterion at the stader the £*
(16)  norm of the differential error.
with K =1,2....... L and The algorithm can be mathematically represented as
follows.

T = {(@d5:0) 1 gnlle > € 1650z llp > €}, @7) L€

wheree is a chosen small positive number. In this way the {RC,RS} =

‘empty’ wavelets are eliminated from the wavelet frame. In

other words we are starting from a regular tree packet (li- {1/}cd @), (8):(d,n) €Z,j ENtE %}

brary) and we select only those which their support hit our (dgim) 357 PAd,gym) 0 A ’ ’

”a'!’“”g data. This method IS callgd by some authaselet be the truncated cosine and sine packet frames respectively
shrinkage[9]. We will show that with very few bases of the as defined in (16).

local trigonometric functions we can obtain a good function
detector. 0

Define the initial residualy. (k) = xi,
k = 1,2,...,N11 andys(o)(h) = Xy h = 1,2,...,Nl2.
4 The Proposed Algorithm Where thex,,, andx,,, are the observed signals as defined

in section 2. Fixed atage index\/ such that minimizes the
The extractor matribA : X — F C R* (A : R — R*)  residual£? norm as above mentioned, &t (t) = 0 and
is an unitary matrix see [2], which is a map of the wavelet f, (t) = 0.
packet trees. Now is known that, given a subspice F

1An A unitary matrix is such thaA =1 = AT 2In a frame the decomposition is not unique.



Begin-loop
1.Fori=1,2,..M.

Calculate the weightsy j ) (k), s(4,5,n) (h) on all cosine
and sine wavelet packet trees according the index:

j(C(d,j,n)(k)a S(d,jm(h)) -

NII

1 c 2
N Z(%(i—l)(k)_ Z C(d,j,n)(kﬁ/f(d,j,n)(k)) +
bk=1 (d,j,n)ER.
1 ] 2
N Z (’Ys(i—1)(h) - Z S(d,j,m) (M) ¥{a,j,n) (h)) ’
2 p=1 (d,j,n)ERs
this yields:
o = (de,n)em(%u—l)(k)’wfdm)(k)))
(d,5.n) . NG
(Z(d,j,n)eRc (w(d,jm)(k)) )
o = (Z(d7j7n)e725<73(i—1)(k)7¢€d7j7n)(k)>)
(d.jn) = . NG
(Ztsmer. Wiasm®)’)
where~.(i — 1)(k) and~s(i —1)(h) (k = 1,....... , NI,
h=1,..... , Ni,) are the residuals of the stage— 1).
2. Let

N;, N, A P( c(i— 1)(k)
V=33 (i) G
k=1 h=1 P %(z 1) k) PE%@ 1)(h);

P ’Ys(l_l)(h)

whereP (v.(; 1 (k))
and the

Preny®) =11

(d,jn)ER.

= |17e(i—1) (k)||* is the true probability

c(d,j,m) (B) Y j.my (R)I?

Line
> \—/ » [T
B.P Filter Threshold \
Logic Breack
» FFT > [T [ - o
Threhold Circuits Circuit
/ 7'y
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Figure 7: Actual Apparatus for Identification of Dangerous
Transients.

Clegy sy E)i ;0 (F);

e
Z Sletaim) 1/’15“”.’”) (t),

bea g m) ERe
Voilh) = Yooy () = D0 s (W, ()
lo,, .  ER,
(d,j,n)
h=1,..... , Ni,.
End Loop.

5 Simulations

In the preliminary simulation we have considegdsignals
as training signals and oth2e signals as fresh testing sig-
nals. These signals were split in two complementary classes,
12 signals with exceed dangerous limits around the bands 90
Hz and 105 Hz and signals which don't exceed them.

It was known that the algorithm in [2] was able to rec-

is the estimated probability. The same way for the true prob-ognize without any error the class which we have called

ability P (vs ;1) (h))

P(s—n®) =11 Y

(d,j,n)ERs

= ||'78(i71)(h)||2 and the

S(d ) (M4 g,m (W

arg({,[gla% ||V||) - {lC(d,j n)a s(d,j, n)} (18)

c73

with (d, j,n) € {R, R.}.

Cs = {Inrush current} performing adaptive subspaces on
the sine and cosinavavelet packet trees organized in two
levels.

The proposed algorithm generates, through the train-
ing, prototype signals and, after the compression through
the same algorithm, coordinate systems so organized.
A subspaceC; = {Inrush current} characterized
from a basis with 4 vectors, 2 (sine/cosine bases) for
C1 = {No dangerous inrush current} and 2 (sine/cosine

(This step selects the adaptive dilation on the cosine andbases) foC, = {Dangerous inrush current}, every vec-

sine frames).

3. Updatef.(t), 7., fs(t) and~s:

c
Z Clegy s lblc(d‘j)n) (t)

ER.

fCi (t) = fC(i_1) (t) +

lc(dvj.")

tor is characterized from 4 components corresponding to the
[0; 50; 100; 150] Hz. The inner product between the coor-
dinate systems and the fresh data vector resulting from the
compression through the algorithm needs mostly only one
time-frequency cell to recognize the inrush. The preliminary
testing simulations, consisting of evaluating the Euclidean
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