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1 Abstract

We describe a method to construct orthonormal basis coordi-
nates which maximizes over redundant dictionaries (frames)
of biorthogonal bases the class separability index ordis-
tancesamong classes. The method proposes an algorithm
which consists of biorthogonal expansions over tworedun-
dant dictionaries. In multiclassification problems,embed-
ded classesare often present, we show how the biorthogo-
nality of the expansion can really help to construct a coordi-
nate system which characterizes the classes. The algorithm
is created for training wavelet networks in order to provide
an efficient coordinate system maximizing theCross Entropy
functionbetween two complementary classes. The algorithm
works with a preliminary extracted features with shrinkage
technique in order to reduce the dimensionality of the prob-
lem. In particular, our attention is pointed out for a practi-
cal time frequency monitoring, detection and classification
of transients in rail vehicle systems. We want to distinguish
transients asinrush currentandno inrush currentand among
them between the two complementary classes:dangerous in-
rush currentandno dangerous inrush current. The proposed
algorithm could be used on line in order to recognize the dan-
gerous transients in real time and thus shut-down the vehicle.
We show how, with a limited number of wavelets and with
few iterations on the compressed data, good and fast perfor-
mances are achieved. Simulations using real measured data
on the vehicle line are included to illustrate and to analyse
the effectiveness of the proposed method.

2 Introduction and Problem Definition

Extracting relevant features from signals or images is an im-
portant process for data analysis. In particular when we are
interested to classifying signals into known categories. We
propose a method for detection and classification of time-
frequency phenomena by using wavelet packets in wavelet
networks with biorthogonal activation functions. Specifically
we are interested to classify transient harmonics as they oc-
cur in electrical power systems [1, 3]. This literature has
indicated wavelets and wavelet networks as a promising ap-
proach for off line analysis and classification. More, a recent
work in this direction [2] developed an efficient algorithm in
order to detect and classify transient harmonic phenomena
as inrush currentwhich presents an unimodal distribution.
This paper tries to extend previous results as in [2], by sev-
eral structural modifications on the training algorithm, to the
class ofembedded phenomenawith which, very often, can be
modeled a classification system. In other words we can think
about embedded phenomena such as the following structured
classes.

Definition 1 Given a setY of (L + 1) classes of signals:
Y = fC1, C2,..........,CL, CCg, whereL are known classes
andCC is the class defined as complement to the classCL. We
will call the setY a set ofembedded classesif the following
relationships hold:

CL \ CC = f0g (1)

and

C1 \ C2 = f0g; C1 [ C2 = C3;
C3 \ C4 = f0g; C3 [ C4 = C5;

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

C(L�2) \ C(L�1) = f0g; C(L�2) [ C(L�1) = CL:
(2)



In our specific task the embedded classes could be seen in
the following way:

Let L=3, and letC1 = fNo dangerous inrush currentg
and we will pose its relative complementary class such as
C2 = fDangerous inrush currentg and thus at the end
C3 = fInrush currentg with its relative complementary
classCC = fNo inrush currentg. Obviously one has that
C3 \ CC = f0g andC1 [ C2 = C3. We want to classify the
inrush current which for instance has an energy which ex-
ceeds several limits in several particular bands of frequency.
In [2] we showed as, looking for the best basis (Shannon
Entropy function) over a dual frame (smooth trigonometric
sine/cosine wavelet functions), a dual coordinate system can
be effectively determined using a particular training algo-
rithm for wavelet networks. In [2] the task was:detect and
classify inrush current.

In this paper the problem looks a little bit more compli-
cated. These kind of phenomena show several difficulties
to be classified because of their physical characteristics. In
this sense it is very important the a priory knowledge on
the phenomenon in order to choose an appropriated family
regressor for extracting relevant features. This reduces the
dimensionality of the problem without loosing information
and constructs at the mean time an efficient and discrimi-
nat system of coordinate. We want to focus our attention
on one method of selection of coordinate systems through
training wavelet networks. We proposed an algorithm which
works with biorthogonal wavelet functions and in particular
we posed our attention over a harmonic detection problem.

Now, why we are using wavelet packets and their relative
biorthogonal families in nonorthogonal libraries ?

We need to define alanguageto describe the signals.
More, we have to seek of optimizing certain criteria depend-
ing on the particular problem. The language must be as much
versatile as possible and as much elastic as possible in order
to describe various local physical features of theembedded
classes of signals. In the mean time the method must be com-
putationally efficient to be practically applied. The wavelet
networks provide flexible coordinate systems, their adaptive
time frequency cells are able to capture the features of the
signals in a reasonable computational calculations. More,
the nonorthogonal libraries allow more elasticity in order to
approximate the training signals, see [4], even though the
optimal expansion of a signal in a redundant dictionary of
waveforms is an NP-complete problem. At the end we want
to remark that the biorthogonaliy of the frames plays a par-
ticular role in order to perform an orthogonal coordinate sys-
tem using the well knownCross Entropy functionwhich is
a measure of the discrepancy between two or more bases.
The algorithm, working on a preliminary compression data
(data shrinkage), builds a basis whichilluminatesthe differ-
ences among embedded classes. It describes every couple
of complementary classes with biorthogonal bases in order
to perform an orthonormal coordinate system maximizing,
during every step, theCross Entropy function, see section 4.
In this way complementary phenomena are considered such
as bimodal phenomena and the biorthogonal approximating

bases allow to perform for each complementary class two or-
thonormal coordinate basis systems. Wavelet networks seem
to provide a natural way to attack our problem even though
several basic issues schould be well satisfied.

2.1 Problem Statement

Let X � <d0 whered0 is the number of samples for each
signal and the dimensionality of thesignal space(X ) or
pattern space which is a subset of the standard d-dimensional
vector space which contains all signals under consideration.
In this case, the dimensionality of the signal space is equiva-
lent to the length of the signals, we are working with dyadic
wavelet packets and thus we will assume thatd0 = 2no

for someno. As in (1), letY = fC1; C2; :::; CL; CCg be
a set ofL known categories or classes andCC defined as
complement, in general for regression problemsY = <. Let
Nl be the number of signals belonging to the classl, i.e. let
us denote a set of classl signals byfxlgNl

i=1. Now the signal
classification problem can be considered as:

find a map calledfeature extractorf : X ! F � <k

(normally more than one) withk � d0 in order to extract
relevant features.

This reduces the dimensionality of the problem under con-
sideration without loosing important information but improv-
ing the efficiency of the pattern recognition.

It is worthwhile to pay attention to the dimensionality
problem, in order to improve the efficiency of the algo-
rithm. Nonparametric estimators soffer from the curse of
dimensionality, the complexity of the estimators grows with
the input dimensionald0. The phenomenon is related to
the fact that the sample length is exponential related to the
lengthd0 of the input sampleX . In general when the input
data training are sparse in the input space<d0 and only
part of this space ’explored’ by the sparce training data
are of interest then the curse of dimensionality is not so
heavy. This normally happens in classification problems
and modeling of control system where the estimation is
done only on the same small portion of the input space.
In order to overcome the curse of dimensionality problem
it is also useful a good choice of the estimator, when the
estimator isclose to the considered physical phenomenon
then theinformation is concentrated in few data. In our case
the reduction of the dimensionality is performed in two steps.

Step 1:data shrinkagein order to reduce the numberNl

of the signals (the sample length).

Step 2: compression of the prototype signals resulting
from the training technique with the wavelet network in
order to have the time frequency cell basis coordinates.

The step 1 allows us to select the most important sub-
spaces in fact, given an approximating wavelet library not
all the wavelet functions are useful but only a small number



of these are important. In particular there are several sets of
signals which don’t hit the wavelt support and these can be
eliminated. The step 2 compress the information into the best
time-frequency probability distribution subspaces.

Once the map is built the classification problem could con-
sist of evaluating the Euclidean distance between the pro-
jected fresh signal through the algorithm and the feature co-
ordinate basis vectors (compressed prototypes). In general
the recognition problem can be written as a map (generally
nonlinear)g : F ! Y . The proposed algorithm uses basi-
cally the best basis paradigm as in [8] or [11] which allows
a rapid search among a large collection of bases (the com-
plexity of the calculation isO(k

�
log(k)

�p
), wherep is equal

1 or 2 depending on the basis type, wavelet dictionaries or
trigonometric wavelet dictionaries respectively).

The paper is organized as follows. In section 3 we discuss
briefly the smooth trigonometric wavelet packets and several
problems connected to the choice of the best regrossor fam-
ily. In section 4 we bresent the algorithm with its mathemat-
ical details. In section 5 we report the achieved results.

3 Background and Several Issues

Wavelet transform and wavelet series are becoming popular
in signal processing and numerical analysis. Loosely speak-
ing, a functionf(t) can be decomposed into

f(t) =
X
j

X
n

wj;n j;n(t) (3)

where the j;n(t) are the wavelet functions, normally ob-
tained by dilating and translating a mother function (t),
the indexj and n denote the dilation and translation re-
spectively andwj;n is the weight coefficient for j;n(t).
The most popular algorithms are related to the orthonormal
wavelet bases, see [7], characterized from fast and elegant
algorithms. There are, besides these, less used, thewavelet
frames, see [7], for which the computations of the coeffi-
cients are more complicated but which have certain advan-
tages. As wavelet frames consist of nonorthogonal wavelet
families, they areredundant bases. To be more formal:

Definition 2 A family of functionsf j;n(t); (j; n) 2 Z; t 2
<g in a Hilbert spaceH space is called a frame ofH if for
every elementf(t) 2 H there are two positive constantsA
andB such that:

Akf(t)k2 �
X
j;n

khf(t);  j;n(t)ik2 � Bkf(t)k2: (4)

Where with h�; �i we have indicated the inner product and
with k � k the norm.

In this approach we have a drawback, the optimal decom-
position on a nonorthogonal basis is a NP-complete problem
and we need to stop the algorithm, for instance, with a thresh-
old criterion at the stagei for theL2 norm of the differential
error, we will come back later to the question.
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Figure 1: Real Signal. Inrush current: time domain. Right:
Inrush current: windowed spectral analysis.
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Figure 2: Real Signal. Inrush current: windowed spectral
analysis.

Now, the first question is which function to use like ac-
tivation function. This is a difficult decision, the collected
experience on this sense doesn’t help too much. All of the
model structures are capable of approximating any ’reason-
able function’ [7]. Thus the question is pick one that ’suits
the application’, in the sense that only few terms will be
needed. A suitable criterion known in the literature is to
select the basis which, once fixed a threshold level, has the
minimum number of elements in the selected frame. Now,
having chosen the best family how to choose the size of the
frame subset ? Finally, how we can select the terms of the
subset ?

3.1 Choosing the Best Family Regressor

The case presented in this paper has quasi-harmonic signals
that change amplitude and phase over time. This latter as-
pect suggests the wavelet like activation function. We show
in Fig. 1 and Fig. 2, where are depicted a measured signal
in time domain and its windowed Fourier transform respec-



Figure 3: Organization of local intervals into a binary tree for
smooth local trigonometric wavelet. Orthogonal basis.

tively, how the data are very well concentrated around several
frequencies, in this case they are multiple of the fundamental
(50 Hz). The picture in Fig. 2 seems to suggest a function
with a frequency window and time support. As shown in [2]
a suitable family for this case is the smooth trigonometric
wavelet packet. We want just to recall several basic aspects,
further details in [10].

Definition 3 Let a library of wavelet packets be the collec-
tion of functions of the form

 (d;j;n)(t) =  j(2
dt� n) (5)

where(d; n) 2 Z andj 2 N.

We have already remarked that we are talking about trun-
cated indices, thus finite libraries of wavelet packets. Here,
thepyramidalpacket is represented with the indices(d; j; n),
d is the level of the tree (scaling parameter),j is the fre-
quency cell (oscillation parameter) andn the time cell (lo-
calization parameter).

We consider a cover of the real axis< =
S1
�1 Ii, where

Ii = [�i; �i+1) and�i < �i+1.
Write Ti = �i+1 � �i = jIij and letWi(t) be a window

function supported in[�i � Ti�1

2 ; �i+1 +
Ti+1

2 ] such that

1X
�1

W2
i (t) = 1 (6)

and

W2
i (t) = 1�W2

i (2�i+1 � t) for t near �i+1:

(7)

These conditions tell how the bell function should be taken
in order to ensure the orthogonality of the basis, see for in-
stanceLemma 3in [6]. This shows that choosing a basis as
in Fig. 3, adiacent function, we abtain a orthonormal basis.
On the contrary if we consider bases on different levels of the
tree as in Fig. 4 these don’t form an orthonormal basis

The functions

Si;k(t) =
2p
2Ti

Wi(t)sin[(2k + 1)
�

2Ti (t� �i)] (8)

Figure 4: Organization of local intervals into a binary tree for
smooth local trigonometric wavelet. Frame.

form an orthonormal basis ofL2(<) subordinate to the par-
tition Wi. The collection of such bases forms a library of
orthonormal bases [10]. We can form a library of orthonor-
mal local cosine bases:

Ci;k(t) =
2p
2Ti

Wi(t)cos[(2k + 1)
�

2Ti (t� �i)]: (9)

We have to remark that taking equal smooth windows
Wi(t) (see [10]) then sine/cosine orthogonality can be main-
tained, see Fig. 5 and Fig. 6 where we have depicted the
sine/cosine bases related to the second level of the packet
tree with a frequency of 50 Hz.

It is easy to check that ifHi denotes the space of func-
tions spanned bySi;k for k = 0; 1; 2; :::: thenHi +Hi+1 is
spanned by

Si;k(t) = P(t)sin[(2k + 1)
�

2(Ti + Ti+1) (t� �i)]; (10)

where

P2(t) =
1p

2(Ti + Ti+1)
�W2

i (t) +W2
i+1(t)

�

is a ’window’ function covering the intervalIi [ Ii+1.
It is necessary to see the connections between the localized

trigonometric functions and wavelet packets. If we consider
the frequency line< split as the union of<+ = [0;+1)
and<� = (�1; 0). On L2(<+) we introduce a window
functionW(!) such that

1X
k=�1

W2(2�k!) = 1: (11)

Clearly we can viewW(2�k!) as window function above
the interval(2k; 2(k+1)) and observe that the functions

sk;j(!) =W(2�k!)sin[
�
j +

1

2

�
�
�! � 2k

2k

�
] (12)

form an orthogonal basis ofL2(<+). Similarly



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time (sec.)

Figure 5: Adjacent (orthogonal) cosine waveforms with
smooth windowC(2;1)(t) andC(2;2)(t).

ck;j(!) =W(2�k!)cos[
�
j +

1

2

�
�
�! � 2k

2k

�
] (13)

gives another orthonormal basis but whose elements are
not orthogonal to the functionssk;j .

In order to build the biorthogonalSk;j sine andCk;j co-
sine bases we defineSk;j as an odd extension to< of sk;j and
Ck;j as an even extension ofck;j . In this way we can find
Sk;j ? Ck

0

;j
0 for everyk; j; k

0

; j
0

, permitting us to write:

Ck;j � iSk;j = exp (
�ij�!
2k

) ~ (!)

where ~ (!) is the Fourier transform of the Meyer wavelet
	 defined in [12], further details of this calculation may be
found in [10]. In Fig. 5 and in Fig. 6 we have depicted the
sine and cosine biorthogonal functions in the time domain,
where we have built the functions with the prototype cutoff
W(t) like a sine function available in [5].

It easy to see how the time and frequency cells are linked
in a dyadic way, this sort of analysis is equivalent to wavelet
packet analysis which allows us to perform an adapted
Fourier windowing directly in the time domain. The wavelet
packet library is constructed by iterating the wavelet algo-
rithm. It easy to see how the time and frequency cells are
linked in a dyadic way, this sort of analysis is equivalent
to wavelet packet analysis which allows us to perform an
adapted Fourier windowing directly in the time domain. The
wavelet packet library is constructed by iterating the wavelet
algorithm.

From now on and in order to formally define thelibrary of
wavelet packetswe will consider a new index notation.

Definition 4 Let a library of wavelet packets be the collec-
tion of functions of the form
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Figure 6: Biorthogonal smooth local sine and cosine function
S(2;2)(t) andC(2;2)(t).

 (d;j;n)(t) =  j(2
dt� n) (14)

where(d; n) 2 Z andj 2 N.

We have already remarked that we are talking about trun-
cated indices, thus finite libraries of wavelet packets. Here,
thepyramidalpacket is represented with the indices(d; j; n),
d is the level of the tree (scaling parameter),j is the fre-
quency cell (oscillation parameter) andn the time cell (lo-
calization parameter).

The function (d;j;n)(t) =  j(2
dt�n) is roughly centered

at2�dn, has support of size� 2�d and oscillates� j.
To go a little bit more in depth, we suppose that the sig-

nal consists ofN = 2N0 dyadic and equally spaced sam-
ples and the library tree contains all the local trigonomet-
ric analyses to levelN0 of the frame, with windows of size
2N0 ; 2N0�1; :::::::1: The basis function will be indexed by the
triplet (d; j; n): if N is the total number of the samples then
the corresponding samples related to thed levelwith relative
desampling areNd = 2d and0 � d � N0, 0 � j < 2N0�d,
0 � n < 2d.

The scale parameterd gives the number of decompositions
of the original signal window into subwindows and the po-
sition indexn numbers the adjacent windows.Thus the in-
formation cell is drawn over the horizontal (time) interval
In = [2N0�dn; 2N0�d(n+ 1)[: In general, the local trigono-
metric bases, for instance the cosine basis, for the subspace
over the time subintervalIn consists of the function with the
associated information cell alongside the frequency interval
Ij = [2dj; 2d(j + 1)[ on the vertical axis (frequency). The
basis functions have the nominal frequencies in2d(j + 1

2 ).
Each subdivision halves the nominal window width and thus
the resolution level, in particular the resolution level on the
tree could be represented like a collection of rectangles:

[2N0�dn; 2N0�d(n+ 1)[�[2dj; 2d(j + 1)[: (15)



Taking a basis with cells on different level of the tree
we obtain a nonorthogonal basis (frames): the symmetry
of the windows is lost but not their derivability, they are
sums of the derivable functions. In the other words, taking
basis elements on different levels of the tree which cover
the real axis< we are considering superpositions of bases
with different resolution frequency cells, the orthogonality
is lost. Our algorithm will work transversally on the wavelet
packet tree without any restriction in order to use all the
possible combinations of the bases, all the possible frames.
Once selected the family regressor, for instance the truncated
sine/cosine wavelets, the(d; j; n) parameterized family:
n
Rc;Rs

o
=

n
 c(d;j;n)(t);  

s
(d;j;n)(t); (d; n) 2 Z; j 2 N; t 2 <

o

should contain a finite number of wavelets, as less as
possible, so that the regressor selection procedure can be
efficiently applied. Given an approximating wavelet library
not all the wavelet functions are useful, normally only a
small number of the coefficients are important, the other
ones can be neglected. In order to explain the construction
of wavelet network let us start with a regular wavelet lattice.
Many wavelets in the regular lattice do not contain any data
point in their support because of the sparseness of the data.
The training data point don’t provide any information for
determining the coefficients of these empty wavelets, this
means that they are superfluous for the regression estimation
and could be eliminated. In general we can select the
candidate library as follows:
n
Rc; Rs

o
=

n
 c(d;j;n)(t);  

s
(d;j;n)(t) : (d; j; n) 2 I1[I2[ :::::::[IK

o
(16)

with K = 1; 2:::::::L and

Ik =
n
(d; j; n) : k c(d;j;n)kp > �; k s(d;j;n)kp > �

o
; (17)

where� is a chosen small positive number. In this way the
’empty’ wavelets are eliminated from the wavelet frame. In
other words we are starting from a regular tree packet (li-
brary) and we select only those which their support hit our
training data. This method is called by some authorswavelet
shrinkage[9]. We will show that with very few bases of the
local trigonometric functions we can obtain a good function
detector.

4 The Proposed Algorithm

The extractor matrixA : X ! F � <k (A : <do ! <k)
is an unitary matrix1 see [2], which is a map of the wavelet
packet trees. Now is known that, given a subspaceH � F

1AnA unitary matrix is such thatA�1 = AT
:

of <k and letH be an unitary basis matrix ofH, then
the orthogonal projection matrices onH and onH? are
P = HHT andQ = I �HHT , respectivaly. It easy to see
that, given anx 2 H thenPx = x and giveny 2 H? then
Py = 0. These properties suggest to perform two orthogo-
nal subspaces which characterize every two complementary
classes choosing among all the possible bases which maxi-
mize the Cross Entropy function. The Cross Entropy func-
tion is a measure of the discrepancy amongL distributions,

normally one may take

�
N0

2

�
pairwise combinations of

this measure. If we callp(1); ::::::;p(L) theL distributions
and withD the discrepancy measure then:

D(fplgLl ) =
L�1X
i=1

LX
j=i+1

D(pi;pj):

TheadditivefunctionD for two distributionp andq is de-
fined as

D(p;q) =

Nl1X
k

Nl2X
h

pk ln
�pk
qh

�
;

whereNl1 andNl2 are the number of the element for each
class and the indicesk andh are the internal indices, further
details in [8].

4.1 Mathematical Details

In order to consider and to use the nonorthogonality of the
frames which generates an interaction between the elements
of the bases2 the algorithm considers to every step all the ele-
ments of the bases previously selected, without any elimina-
tion, see [4]. Because of the decomposition on a nonorthog-
onal basis is not unique we need to stop the algorithm, for
instance, with a threshold criterion at the stagei for theL2
norm of the differential error.

The algorithm can be mathematically represented as
follows.
Let
n
Rc;Rs

o
=

n
 c(d;j;n)(t);  

s
(d;j;n)(t); (d; n) 2 Z; j 2 N; t 2 <

o

be the truncated cosine and sine packet frames respectively
as defined in (16).

0. Define the initial residualc(0)(k) = xl1k ,
k = 1; 2; :::; Nl1 ands(0)(h) = xl2h , h = 1; 2; :::; Nl2 .
Where thexl1k andxl2h are the observed signals as defined
in section 2. Fixed astage indexM such that minimizes the
residualL2 norm as above mentioned, letfc0(t) = 0 and
fs0(t) = 0.

2In a frame the decomposition is not unique.



Begin-loop

1. For i = 1; 2; ::M:

Calculate the weightsc(d;j;n)(k), s(d;j;n)(h) on all cosine
and sine wavelet packet trees according the index:

J
�
c(d;j;n)(k); s(d;j;n)(h)

�
=

1

Nl1

Nl1X
k=1

�
c(i�1)(k)�

X
(d;j;n)2Rc

c(d;j;n)(k) 
c
(d;j;n)(k)

�2
+

1

Nl2

Nl2X
h=1

�
s(i�1)(h)�

X
(d;j;n)2Rs

s(d;j;n)(h) 
s
(d;j;n)(h)

�2
;

this yields:

c(d;j;n) =
�P

(d;j;n)2Rc
hc(i�1)(k);  c(d;j;n)(k)i�P

(d;j;n)2Rc

�
 c(d;j;n)(k)

�2�(�1)
�
;

s(d;j;n) =
�P

(d;j;n)2Rs
hs(i�1)(k);  s(d;j;n)(k)i�P

(d;j;n)2Rs

�
 s(d;j;n)(k)

�2�(�1)
�
;

wherec(i� 1)(k) and s(i� 1)(h) (k = 1; ::::::::; Nl1

h = 1; ::::::::; Nl2) are the residuals of the stage(i� 1).

2. Let

V =

Nl1X
k=1

Nl2X
h=1

� P̂�c(i�1)(k)�
P�c(i�1)(k)�

�
ln
� P̂
�
c(i�1)(k)

�
P
�
c(i�1)(k)

�
P̂
�
s(i�1)(h)

�
P
�
s(i�1)(h)

�
�
;

whereP�c(i�1)(k)� = kc(i�1)(k)k2 is the true probability
and the

P̂�c(i�1)(k)� = k
X

(d;j;n)2Rc

c(d;j;n)(k) 
c
(d;j;n)(k)k2

is the estimated probability. The same way for the true prob-
ability P�s(i�1)(h)� = ks(i�1)(h)k2 and the

P̂�s(i�1)(h)� = k
X

(d;j;n)2Rs

s(d;j;n)(h) 
s
(d;j;n)(h)k2:

arg
�

max
fRc;Rsg

kVk� = flc(d;j;n); ls(d;j;n)g (18)

with (d; j; n) 2 fRc;Rsg:

(This step selects the adaptive dilation on the cosine and
sine frames).

3. Updatefc(t), c, fs(t) ands:

fci(t) = fc(i�1)
(t) +

X
lc(d;j;n)2Rc

clc(d;j;n)
 clc(d;j;n)

(t)

DFT

FFT

Logic Circuits
(Identify Transient)

Logic 
Circuits

Breack
Circuit 

B.P Filter Threshold

Threshold

Threshold

Line

Figure 7: Actual Apparatus for Identification of Dangerous
Transients.

ci(k) = c(i�1)(k)�
X

lc(d;j;n)2Rc

clc(d;j;n)
(k) cl(d;j;n)(k);

k = 1; ::::::::; Nl1 ;

fsi(t) = fs(i�1)
(t) +

X
ls(d;j;n)2Rs

sls(d;j;n) 
s
ls(d;j;n)

(t);

si(h) = s(i�1)(h)�
X

ls(d;j;n)2Rs

sls(d;j;n)
(h) sls(d;j;n)(h);

h = 1; ::::::::; Nl2 :

End Loop.

5 Simulations

In the preliminary simulation we have considered20 signals
as training signals and other20 signals as fresh testing sig-
nals. These signals were split in two complementary classes,
12 signals with exceed dangerous limits around the bands 90
Hz and 105 Hz and8 signals which don’t exceed them.

It was known that the algorithm in [2] was able to rec-
ognize without any error the class which we have called
C3 = fInrush currentg performing adaptive subspaces on
the sine and cosinewavelet packet trees organized in two
levels.

The proposed algorithm generates, through the train-
ing, prototype signals and, after the compression through
the same algorithm, coordinate systems so organized.
A subspaceC3 = fInrush currentg characterized
from a basis with 4 vectors, 2 (sine/cosine bases) for
C1 = fNo dangerous inrush currentg and 2 (sine/cosine
bases) forC1 = fDangerous inrush currentg, every vec-
tor is characterized from 4 components corresponding to the
[0; 50; 100; 150] Hz. The inner product between the coor-
dinate systems and the fresh data vector resulting from the
compression through the algorithm needs mostly only one
time-frequency cell to recognize the inrush. The preliminary
testing simulations, consisting of evaluating the Euclidean
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Figure 8: Neural Network Apparatus for Identification of
Dangerous Transients.

distance between the projected fresh signal and the coordi-
nate basis vectors, show correct identification percentages of
100 % in 20 ms. The classical methods used in rail vehicle
control which combine FFT, DFT and bandpass plus thresh-
old criterion needs normally more than 200 ms to recognize
the inrush and their equipment are very tricky, see Fig. 7
and further information in [13]. In Fig. 8 is schematically
reported the new network scheme for identification of dan-
gerous transients, where it is possible to see its elementary
structure.

6 Conclusions
We have described an algorithm to construct an adaptive
orthonormal coordinate basis for classification problems
of embedded classes of signals using wavelet packets in
neural networks. The basis functions generated by this
algorithm capture relevant time and frequency features in
data. We proposed an algorithm for neural network training
and filtering based on recursive iterations over biorthogonal
library frames in order to detach, compress and classify
the signals. The developed algorithm combines threshold
techniques, regression analysis and backpropagation pro-
cedures to build a basis whichilluminates the differences
among embedded classes. It describes every complemen-
tary class with biorthogonal bases in order to perform an
orthonormal coordinate system maximizing, at every step,
the Cross Entropy function. In this way complementary
phenomena are considered such as bimodal phenomena and
the biorthogonal approximating bases allow to perform for
each complementary class two orthonormal coordinate basis
systems.
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