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Abstract
Active Plasma Resonance Spectroscopy (APRS) is a well known diagnostic method, where
a radio frequency probe is immersed into a plasma and excites plasma oscillations. The
response of the plasma is recorded as frequency dependent spectrum, in which
resonance peaks occur. By means of a mathematical model plasma parameters like the
electron density or the electron temperature can be determined from the detected
resonances.
The majority of all APRS probes have in common, that they are immersed into the
plasma and perturb the plasma due to the physical presence of the probe. Thus, they
are invasive and can at least influence the homogeneity of the plasma. To overcome
this problem, the planar Multipole Resonance Probe (pMRP) was invented, which can be
integrated into the chamber wall of a plasma reactor.
Within this paper, the first analytic model of the pMRP is presented, which is based on a
cold plasma description of the electrons. The general admittance of the probe-plasma
system is derived by means of functional analytic methods and a complete
orthonormal set of basis functions. Explicit spectra for an approximated admittance
including a convergence study are shown. The determined resonance frequencies are
in good agreement with former simulation results.

Keywords: Active Plasma Resonance Spectroscopy, Multipole Resonance Probe,
non-invasive Plasma Process Monitoring, Plasma Diagnostic, Functional analysis, planar
Multipole Resonance Probe

Introduction
A plasma occupies the natural ability to resonate near the electron plasma frequency
ωpe. This ability is the essential requirement for active plasma resonance spectroscopy
(APRS). Coupling a radio frequency (rf ) signal in the GHz range into the plasma via an
electrical probe the frequency dependent system response can be recorded to detect res-
onances. By means of a mathematical model to describe these resonance phenomena
plasma parameters like electron density can be calculated.
Many different designs of APRS probes are invented. An overview and a classification

of them are presented in reference [1]. One class of APRS probes excites electrostatic
resonances [2–9], which occur below ωpe and can be described by a model of the probe-
plasma system in an electrostatic approximation. Many approaches to understand these
resonance phenomena have been reported [10–25]. They have in common, that their
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models are based on a fluid dynamical description and they focus only on a specific design
of a certain probe.
However, the whole class of these probes can also be described generally. Applying func-

tional analytic (Hilbert space) methods, a general and geometry independent solution
of the system response can be derived [26]. This response is identified as the electrical
admittance of the probe-plasma system. Based on this solution one can prove, that the
Multipole Resonance Probe (MRP) has the optimal design [26, 27].
Apart from this fact, it is not suited for many industrial applications, because it is

immersed into the plasma and thus invasive due to its physical presence. In industry
non-invasive diagnostic methods are preferred, which have ideally no influence on the
homogeneity of the plasma. To minimize the invasive behavior of the MRP a planar
version, the planarMultipole Resonance Probe (pMRP), was invented [28]. First measure-
ments for two different plasma densities show a clear shift of the resonance frequency
to a higher value, which was also shown in CST-simulations. A more detailed investiga-
tion is presented in ref. [29], where the influence of the electrode radius was analyzed.
The simulation results show, that a certain radius has to be chosen to cover a specific
frequency range. Also a variation of the elastic collision frequency in the range of 300
to 600MHz was investigated and compared to the behavior of the MRP. Measurements
with the pMRP of a radius of 4mm for different plasma input powers between 200W and
500W in a double inductively coupled plasma in argon were compared to the simulation
results and show a comparable behavior.
However, to determine plasma parameters from themeasured resonance peaks, a math-

ematical model is needed. In this manuscript the general description of APRS in an
electrostatic approximation will be applied to the geometry of the pMRP and an analytic
solution for the admittance of the probe-plasma system will be presented. To determine
specific spectra, the analytic solution has to be approximated, which requires a conver-
gence study for different parameters. The final converged spectra lead to a proportional
relation between the resonance and the plasma frequency, which can be used as a simple
formula to determine the electron density from a measured resonance. The definition of
such a simple relation is the main goal of this manuscript.

Consequences of symmetry in MRP and pMRP design
In reference [26] a geometry independent APRS probe, which excites electrostatic reso-
nance modes, was analyzed. In the general APRS model a matrix sheath with complete
electron depletion and a sharp sheath edge is assumed. One of the main results was,
that the physical interpretation of the probe-plasma interaction can be represented by a
lumped element circuit model. An example for a two electrode systemwas presented. The
generalized structure of this circuit can be identified as a triangle and is depicted in Fig. 1
(left). It shows a coupling of each electrode to ground and a coupling between the elec-
trodes itself. In case of any two electrode probe-plasma system, which fulfills a geometric
symmetry between the electrodes, leads to equal impedances Z2 in the branches between
the electrodes and ground.
Each triangle circuit can be transformed equivalently into a star circuit (see Fig. 1,

center). Thus, the impedancesZ12 conducted to the electrodes have to be equal, due to the
geometric symmetry. Applying anti-symmetric voltages (with a 180 degree phase shift)
at the two electrodes, the current from the upper electrode to ground equals the current
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Fig. 1 General lumped element circuit model of a two electrode probe-plasma system in geometric
symmetry (left), equivalent star circuit of this system (center), and simplified circuit without coupling to
ground due to anti-symmetric voltages applied to the electrodes (right)

from ground to the lower electrode, but with opposite directions. Due to that, these cur-
rents vanish and a virtual ground is present in the center of the star circuit, which allows
to neglect the coupling to ground. The simplified lumped element circuit model of the
probe-plasma interaction is depicted in Fig. 1 (right). A RLC series circuit parallel to a
vacuum capacitance Cvac is the simplest lumped element circuit model for Z as shown in
[26]. C represents the dielectric and sheath behavior, L the inertia of the electrons, and R
damping due to elastic collisions of the electrons with the neutral background. Cvac rep-
resents the coupling of the electrodes, which is also present without plasma. Thus, the
probe measures the series resonance of the plasma and the sheath.
The required symmetries are fulfilled by both, theMRP and also the pMRP. A schematic

of the pMRP is shown in Fig. 2. It consists of two half-disc electrodes, which are conducted
to a tapered-balun. This balun ensures the anti-symmetric signal at the electrodes, which
is generated as a non-symmetric signal by a network analyzer and transferred to the balun
via a coaxial cable. To avoid a direct contact of the electrodes with the plasma, they are
covered by a dielectric disc, which has a larger radius as the electrodes. The whole probe,
including the dielectric cover is mounted within the chamber wall of the plasma reactor.
In former works about the pMRP its general performance was shown by CST sim-

ulations and measurements [28, 29]. However, an analytic model of the probe-plasma
system to determine a simple relation between the measured resonance frequency and

Fig. 2 Schematic of the pMRP (courtesy of D. Pohle, C. Schulz, and I. Rolfes), which consists of two half-disc
electrodes with radius RS conducted to a tapered-balun and a coaxial cable. The electrodes are covered by a
dielectric disc, which avoids a direct contact with the plasma



Friedrichs and Oberrath EPJ Techniques and Instrumentation  (2018) 5:7 Page 4 of 15

the plasma frequency, which allows to measure the electron density, has not been derived,
yet. Such a model will be presented in the next section.

Model of the pMRP and its general admittance
In a recent work a functional analytic description of APRS in an electrostatic approxima-
tion for probes in arbitrary geometry was derived and a general solution of the admittance
was presented [27]. In this section we present the model of the pMRP and apply the
general description to its specific geometry.
As depict in Fig. 3 the pMRP consists of two circular half-disc electrodes E1/2 with

the radius RS, which are perfectly integrated into the chamber wall. The electrodes are
insulated to each other and to the grounded chamber wall. A rf signal is applied to each
of the electrodes, but with a 180 degree phase shift to each other. To allow for analytic
solutions, a dielectric D with thickness d covers the probe and also the chamber wall (In
reality only the electrodes are covered by the dielectric and the whole probe including the
dielectric is integrated into the chamber wall as described in “Consequences of symmetry
in MRP and pMRP design” section).
V = P ∪ S ∪ D is the domain of the dynamical interaction between the probe and

the plasma P , where S is the sheath with thickness δ. Caused by the circular half-disc
electrodes a cylindrical coordinate system is chosen. The boundary ∂V of the dynamic
interaction domain is then given by the electrode and wall surfaces at z = 0 and at the
surfaces z → ∞ and R = R∞, where the dynamic interaction is assumed to vanish.
Within S and P the neutral gas is assumed as a stationary background. The same holds

for the ions, because the frequency ω of the applied signal is much larger than the ion
plasma frequency ωpi (ωpi � ω). Thus, the dynamical behavior of the plasma can be
described by the cold plasma model in an electrostatic approximation for the electrons,
given by the continuity equation and the generalized Ohm’s law

∂σe
∂t

= − �n · �je
∣
∣
z=d+δ

, (1)

∂ρe
∂t

= −∇ ·�je , (2)

∂ �je
∂t

= −ε0ω
2
pe∇φ − ν�je − ε0ω

2
pe

2
∑

k=1
Uk∇ψk . (3)

Fig. 3 The pMRP consists of two circular half-disc electrodes E1/2 with radius RS integrated into the chamber
wall. A dielectricD covers the electrodes and the chamber wall. The sheath S in front of the dielectric
separates it from the plasma P
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The physical variables are charge density ρe and current density �je of the electrons. ν
represents the elastic collision frequency of the electrons with the neutral background gas
and is assumed to be much smaller than the electron plasma frequency (ν � ωpe), which
is typical for a low pressure plasma. Due to the complete electron depletion within the
sheath, a surface charge density σe at the sheath edge SK has to be taken into account. φ
is called inner potential and couples to the Poisson equation

−∇ · (ε0εr∇φ) =

⎧

⎪⎨

⎪⎩

0 �r ∈ S ∪ D
σe �r ∈ SK
ρe �r ∈ P

(4)

with homogeneous boundary conditions. εr, the respective permittivity, is given as 1
withinP and S and as εD = const withinD. The excitation of the plasma due to the rf sig-
nal is represented by the applied voltages Uk and the characteristic functions ψk , which
fulfill Laplace’s equation

∇2ψk = 0 (5)

with the boundary conditions

ψk(�r)|�r∈Ek′ = δkk′ , (6)

ψk(�r)|z=0 ,r>RS = 0 , (7)

lim
z→∞ ψk(�r) = 0 . (8)

δkk′ is the Kronecker Delta, which equals 1 if k = k′ and 0 otherwise.
As presented in [27], the current at one electrode E1 is defined as the scalar product

of an excitation vector |e1〉 =
(

0 , 0 ,−ε0ω2
pe∇ψ1

)T
and the dynamical state vector |z〉 =

(

σe , ρe , �je
)T

i1 = 〈e1| z〉 =
2
∑

k′=1
〈e1| (iω − TC − TD)−1 |ek′ 〉Uk′ =

2
∑

k′=1
Y1k′Uk′ . (9)

Based on the general solution of the dynamical state vector, Y1k′ can be identified as the
coupling admittance between the electrodes. It is given by

Y1k′ = 〈e1| (iω − TC − TD)−1 |ek′ 〉 , (10)

where TC and TD are the conservative and dissipative operator, respectively. They and the
corresponding scalar product are defined in Appendix A.

Expanded admittance of the pMRP
To compute specific spectra of the pMRP, its coupling admittance has to be expanded
in an appropriate complete orthonormal basis. Since the eigenvalue of the operator TD,
which equals ν, is assumed to be much smaller than the eigenvalues of the conservative
operator TC , which are on the scale of ωpe, a perturbation approach for operators can
be applied [27]. Thus, the set of eigenstate vectors {|znm〉} of TC is a suitable choice as
a complete orthonormal basis (To make this section more readable, all derivations are
shifted to the appendix.). It can be derived by solving the eigenvalue equation

TC|znm〉 = iω|znm〉 . (11)
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To solve this eigenvalue problem in cylindrical coordinates we expand all scalar functions
into cylindrical harmonics

σe(r,ϕ) =
∞
∑

n=1

∞
∑

m=0
σnmJm(knmr)eimϕ , (12)

ρe(r,ϕ, z) =
∞
∑

n=1

∞
∑

m=0
ρnm(z)Jm(knmr)eimϕ , (13)

φ(r,ϕ, z) =
∞
∑

n=1

∞
∑

m=0
φnm(z)Jm(knmr)eimϕ , (14)

and the current density into vector cylindrical harmonics

�je(r,ϕ, z) =
∞
∑

n=1

∞
∑

m=0

(

j(R)
nm(z)�Rnm + j(�)

nm (z) ��nm + j(Z)
nm(z)�Znm

)

. (15)

Jm(knmr) represent Bessel’s functions of the m-th order. knm = jmnR−1∞ is its n-th eigen-
value connected to the n-th root jmn of the m-th Bessel function. The vector cylindrical
harmonics are orthonormal on circular surfaces with the radius R∞. Their definitions and
some properties are shown in Appendix B.
Similar to the calculations in [27], the authors assume a constant electron density in the

bulk and thus ωpe = const to ensure square integrable eigenstate vectors. The normalized
eigenstate vector to the eigenvalue

ωnm = ± 1√
2

√
(

1 −
(

1 − 2
εD cosh(knmd) + 1

)

e−2knmδ

)

ωpe = ±ηnmωpe (16)

can then be derived
∣
∣
∣z(±)
nm

〉

=
(

φnm(z)Jm(knmr)eimϕ

±ε0ω2
pe

knm
NZωnm

[ ��nm − i�Znm
]

φ
(P)
nm (z)

)

. (17)

It is important to note, that the inner potential is used in the eigenstate vector, but it
couples unique to the surface charge density σe and the charge density ρe via Poisson’s
equation. NZ represents the normalization coefficient of the vector cylindrical harmon-
ics (see Appendix B). To finalize the expansion of the coupling admittance, an explicit
expression of the excitation vector is needed and is given as

|ek〉 =
⎛

⎝
0

− ε0ω2
pe

NZ

[

− ��nmiknmψnm(z) + �Znm
dψnm
dz

]

⎞

⎠ , (18)

including the z-dependent part of the characteristic functions ψnm.
Entering the completeness relation of the eigenstate vectors

∞
∑

n=1

∞
∑

m=0

∣
∣
∣z(+)
nm

〉 〈

z(+)
nm

∣
∣
∣+
∣
∣
∣z(−)
nm

〉 〈

z(−)
nm

∣
∣
∣ = 1 (19)

twice and the excitation vector (18) into (10), the expanded coupling admittance of the
pMRP reads as follows

Y1k′ =
∞
∑

n=1

∞
∑

m=0

[

ε0ωpeknm
N2
Zηnm

B(P)
nm e−2knm(d+δ)

]2
2iωβ

(1)
nmβ

(k′)
nm

ω2
peη

2
nm + 2iωνnm − ω2 . (20)
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B(P)
nm , β

(1)
nm, and β

(k′)
nm are integration constants, which are defined by the boundary and

transition conditions of the eigenvalue problem (see Appendices C and E). These con-
stants include only geometric parameters of the probe. νnm = − 1

4ν are the matrix
elements of the expanded dissipative operator TD (see Appendix F).
Finally, one can derive the admittance of the pMRP by entering the coupling admit-

tance (20) into (9) and utilizing the 180 degree phase shift of the applied voltages
U1 = −U2 = U :

Y =
∞
∑

n=1

∞
∑

m̃=0
j2m̃+1,nJ22(m̃+1)(j2m̃+1,n)e−2kn,2m̃+1(d+δ)

4πε0ω2
peR∞iωβ

(1)2
n,2m̃+1

2ω2
peη

2
n,2m̃+1 − iων − 2ω2 . (21)

The admittance vanishes for evenm, which yields a final sum over oddm = 2m̃ + 1.

Converged spectra of the pMRP
The admittance of the pMRP, derived within the last section, can be used to plot and ana-
lyze its spectrum. However, the spectrum is not given by an infinite number of discrete
resonance modes, like the spectrum of probes with a spherical probe tip [27], because the
electrode geometry of the pMRP is not represented by Delta functions in the correspond-
ing Fourier space. This means, that the admittance of the pMRPwill have a spectrumwith
a broad resonance as a superposition of all addends in the double series (21). Thus, to
determine explicit spectra, an approximated admittance with truncated sums is needed.
Within this section we analyze the convergence behavior of the pMRP spectrum depen-

dent on three parameters: the radius of the boundary surface R∞, the upper boundary of
the inner sum M̃max and the upper boundary of the outer sumNmax. All other parameters
are given by the geometry of the probe or the plasma itself and influence just the position
of the resonance. In order to compare the determined spectra, we choose parameters of
the pMRP taken from a recent published paper [29]: RS = 3mm, d = 0.4mm, εD = 3.55,
δ = 0.3mm, ωpe = 2π · 2.8 · 109 s−1 and ν = 0.015ωpe.
Figure 4 shows four different spectra to demonstrate the influence of R∞ for 5 (bold

orange line), 10 (dashed red line), 20 (dot-dashed blue line), and 40 (dotted black line)
times the probe radius RS. M̃max = 10 and Nmax = 200 are set to large numbers, to focus
only on the influence of R∞. If R∞ is too small, single peaks can be observed in the spectra.
They correspond to certain eigenvalues, but have no physical meaning. The larger R∞ the
smoother the spectrum gets and one broad resonance peak is formed. Above R∞ = 40RS
the spectrum is practically converged. Thus, R∞ = 40RS represents the minimal radius
for the boundary surface and will be used in further calculations within this manuscript.
The influence of M̃max is not tremendous. It is shown for M̃max equal to 0, 1, and 2 with

Nmax = 200 in Fig. 5. A small difference in the height of the peaks and in the behavior
above ω = 0.6ωpe can be observed in the spectra on the left hand side for M̃max =
0 (dashed blue line) and M̃max = 1 (bold red line). Increasing M̃max to 2 (see Fig. 5,
right, dotted) changes just the behavior above ω = 0.6ωpe, which can be interpreted as
contribution of higher modes, but the position and the height of the main peak remain
the same. A further increase of M̃max shows no difference within the spectra and can be
neglected. Since the main resonance is not influenced by larger values of M̃max, we define
it to 1 for further calculations.
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Fig. 4 Spectra of the pMRP for constant M̃max = 10 and Nmax = 200 and varying radius R∞ = 5 RS (bold
orange line), R∞ = 10 RS (dashed red line), R∞ = 20 RS (dot-dashed blue line), and R∞ = 40 RS (dotted black
line)

A strong influence is given by the outer sum truncated with Nmax, which is shown in
Fig. 6. On the left hand side the height and also the position of the peaks differ for Nmax
equal to 50 (dashed orange line) and 75 (dot-dashed blue line). The spectra on the right
hand side for Nmax equal to 100 (bold red line) and 125 (dotted black line) differ just
slightly for values above ω = 0.6ωpe, but the height and the position of the peak remain
the same. A further increase ofNmax leads to identical spectra, which definesNmax = 125
as smallest upper boundary of the outer sum for practically converged spectra.
Thus, practically converged spectra for the pMRP can be determined for M̃max = 1,

Nmax = 125, and R∞ = 40RS. In Fig. 7 (left) converged spectra for three different probe
radii RS = 2mm (dotted orange line), RS = 3mm (bold red line), and RS = 4mm (dashed
black line) are depicted. The corresponding resonance frequencies are ωr = 0.598ωpe,
ωr = 0.542ωpe, and ωr = 0.497ωpe, respectively. They represent the proportional rela-
tions between the resonance and the plasma frequency, which are required to determine
the electron density from a measured resonance. They are in good agreement with the
CST simulations presented in [29] for the chosen probe and plasma parameters.

Fig. 5 Spectra of the pMRP for constant Nmax = 200 and R∞ = 40 RS and varying M̃max = 0 (dashed blue
line), M̃max = 1 (bold red line), and M̃max = 2 (dotted)
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Fig. 6 Spectra of the pMRP for constant M̃max = 1 and R∞ = 40 Rs and varying Nmax = 50 (dashed orange
line), Nmax = 75 (dot-dashed blue line), Nmax = 100 (bold red line) and Nmax = 125 (dotted black line)

As presented in ref. [29], the different probe radii are required to cover different fre-
quency ranges. Within these ranges the relation between the plasma frequency fp and
the measured resonance frequency fr are plotted in Fig. 7 (right). These frequency ranges
cover the following ranges of electron densities given in 1016 m−3: 1.8 − 8.4, 6 − 16,
and 13 − 26. The results show the same trend, but differ slightly in the proportionality.
The reason for that can be explained by the differences between the analytic model in
the electrostatic approximation and the full three dimensional electromagnetic numerical
simulations.

Conclusion
Within this work the authors presented the first analytic model of the pMRP and derived
the general admittance of the probe-plasma system bymeans of functional analytic meth-
ods. To determine an explicit expression of the admittance a complete orthonormal set
of basis functions was derived by the eigenvalue problem of the conservative operator TC .
They are based on cylindrical harmonic functions, due to the cylindrical geometry of the
calculation domain.
The explicit admittance is represented by an analytic expression, but it is given by an

infinite expansion and has to be truncated to determine specific spectra of the pMRP.
Due to that, a convergence analysis is presented to define the minimum values of the
parameters R∞ = 40RS, Nmax = 125, and M̃max = 1. They influence the convergence
behavior.
In the converged spectra a unique resonance peak is observable, similar to the spectra

of the spherical impedance probe (sIP) or theMRP. However, its half width is much larger.

Fig. 7 Converged spectra of the pMRP (left) and relations between the resonance and the plasma
frequencies (right) for different probe radii: RS = 2mm (dotted orange line), RS = 3mm (bold red line), and
RS = 4mm (dashed black line)
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This broader resonance peak is not caused by stronger damping or an additional damp-
ing mechanism like kinetic damping. It is due to the fact, that the eigenfunctions of the
electrodes geometry are not represented by Delta functions in the corresponding Fourier
space as in spherical geometry.
Based on the converged spectra resonance frequencies for probes with different probe

radii can be determined, which are in good agreement with former CST simulations [29].
As proposed in this reference probes with different probe radii should be used to cover
different frequency ranges. Within these frequency ranges the analytically determined
resonance frequencies in this mansuscript are larger than that from the simulations. This
is caused by a metallic adapter ring, which serves as planar impedance matching in the
pMRP design. First simulations show, that a decrease of the inner radius of this ring shifts
the resonances to larger frequencies, which leads to a better agreement with the analytic
model.
Based on the presented model the pMRP can be used for measurements of the elec-

tron density by means of the proportional relation ωr ∝ ωpe. It is an excellent candidate
to monitor and/or control plasma processes. As a next step further detailed compar-
isons of the presented model in an electrostatic approximation to full three dimensional
electromagnetic simulations are planed to analyze the differences within the model and
the simulation results. Furthermore, measurements with the pMRP compared to other
diagnostic tools will follow.

Appendix A: operators and scalar product
The general definitions of the conservative and dissipative operator and the scalar product
are given in [26]. Here, we define these operators and the scalar product for the geometry
of the pMRP. The operators are given by

TC |z〉 =
(

− �n · �je
∣
∣
z=d+δ

,−∇ ·�je ,−ε0ω
2
pe∇φ

)T
, (22)

TD |z〉 = (0 , 0 ,−ν �je
)T , (23)

and the scalar product between two different state vectors is defined as

〈

z′
∣
∣ z〉 =

∫ ∞

0

∫ 2π

0

∫ R∞

0
ε0εr∇φ′∗ · ∇φ r drdϕdz (24)

+
∫ ∞

d+δ

∫ 2π

0

∫ R∞

0

1
ε0ω2

pe
�j′∗e · �je r drdϕdz .

Appendix B: vector cylindrical harmonics
The vector cylindrical harmonics used in this manuscript are defined as

�Znm = Znm�ez = Jm(knmr)eimϕ

√
πR∞Jm+1(jmn)

�ez = NZJm(knmr)eimϕ�ez , (25)

�Rnm = 1
knm

�LZnm , (26)

��nm = �ez × �Rnm . (27)

�L = −i �ez × �∇ is a rotation operator motivated by the angular momentum. These func-
tions build an orthonormal basis on the circular surfaces with radius R∞ and fulfill the
following orthogonal relations:
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∫ 2π

0

∫ R∞

0
�Z∗
nm · �Zn′m′ rdrdϕ = δnn′δmm′ , (28)

∫ 2π

0

∫ R∞

0
�R∗
nm · �Rn′m′ rdrdϕ = δnn′δmm′ , (29)

∫ 2π

0

∫ R∞

0
��∗
nm · ��n′m′ rdrdϕ = δnn′δmm′ , (30)

∫ 2π

0

∫ R∞

0
�Z∗
nm · �Rn′m′ rdrdϕ = 0 , (31)

∫ 2π

0

∫ R∞

0
�Z∗
nm · ��n′m′ rdrdϕ = 0 , (32)

∫ 2π

0

∫ R∞

0
��∗
nm · �Rn′m′ rdrdϕ = 0 . (33)

Appendix C: derivation of the eigenstate vector
The eigenvalue problem (11) expanded into the scalar and vector cylindrical harmonics
reads as follows

iωσnm = −j(z)nm |z=d+δ , (34)

iωρnm = ∂2φnm
∂z2

− ik2nmφnm(z) , (35)

iωj(R)
nm = 0 , (36)

iωj(�)
nm = iε0ω2

peknm
NZ

φnm , (37)

iωj(Z)
nm = −ε0ω2

pe
NZ

∂φnm
∂z

. (38)

Applying the expansion to Poisson’s equation simplifies it to the z-component of the inner
potential

−ε0

[
∂2φnm
∂z2

− k2nmφnm

]

=

⎧

⎪⎨

⎪⎩

0 z ∈ S ∪ D
σe z ∈ SK
ρe z ∈ P

(39)

with the boundary conditions

φ(D)
nm (0) = 0 and lim

z→∞ φ(P)
nm (z) = 0 , (40)

and the transition conditions

φ(D)
nm (d) − φ(S)

nm (d) = 0 , (41)

φ(S)
nm (d + δ) − φ(P)

nm (d + δ) = 0 , (42)
[

dφ(S)
nm
dz

− εD
dφ(D)

nm
dz

]

z=d
= 0 , (43)

[(

1 − ω2
pe

ω2

)

dφ(P)
nm
dz

− dφ(S)
nm
dz

]

z=d+δ

= 0 . (44)
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Within the plasma domain P the dynamic Eqs. (34) to (38) can be simplified to one
equation for the charge density ρnm, which can be entered into (39) to find

[

1 − ω2
pe

ω2

][

d2φ(P)
nm

dz2
− k2nmφ(P)

nm

]

= 0 . (45)

Relevant frequencies have to fulfill ω �= ωpe, and thus the right bracket of Eq. (45) has to
be equal to zero, which represents the expanded Laplace equation. Also within the sheath
S and the dielectricD Laplace’s equation holds. Its general solution for the inner potential
of all domains φ

(D,S,P)
nm is given by

φ(D,S,P)
nm (z) = A(D,S,P)

nm eknmz + B(D,S,P)
nm e−knmz . (46)

Applying the transition and boundary conditions five of the six constants and the
eigenvalues ωnm of TC in cylindrical coordinates can be determined

B(D)
nm = −Anm , (47)

A(S)
nm = 1

2

[

1 + e−2dknm (εD − 1) + εD
]

Anm , (48)

B(S)
nm = 1

2

[

−1 − e2dknm (εD − 1) − εD
]

Anm , (49)

A(P)
nm = 0 , (50)

B(P)
nm = −1

2

[

(1 + εD)
(

1 − e2knm(d+δ)
)

+ (εD − 1)
(

e2dknm − e2δknm
)]

Anm . (51)

Anm, the last constant, can be derived by normalization of the eigenstate vector.

Appendix D: normalization
The corresponding norm of an eigenstate vector is defined by the square root of the
scalar product of two identical eigenstate vectors |znm〉. In cylindrical geometry the scalar
product of these eigenstate vectors reads as follows

〈znm| znm〉 = 1
N2
Z

∫ ∞

0
ε0εr

[(
dφnm(z)

dz

)2
+ k2nmφ2

nm(z)
]

dz (52)

+
∫ ∞

d+δ

1
ε0ω2

pe

[∣
∣
∣j(R)
nm(z)

∣
∣
∣

2 +
∣
∣
∣j(�)
nm (z)

∣
∣
∣

2 +
∣
∣
∣j(Z)
nm(z)

∣
∣
∣

2
]

dz .

Fulfilling the condition ||znm|| = √〈znm| znm〉 = 1, the last constant Anm can be
determined

Anm =
√
√
√
√

N2
Ze−2knmd

[

εD − 1 + e2knmd (εD + 1)
]−1

knmε0
[

(1 + εD)
(

1 − e2knm(d+δ)
)+ (εD − 1)

(

e2dknm − e2δknm
)] . (53)

Appendix E: derivation of the excitation vector
The excitation vector |ek〉 contains the characteristic functions ψk , which follow Laplace‘s
equation

∇ · (ε0εD∇ψk = 0) with lim
z→∞ ψk = 0 and ψk|Ek′ = δkk′ . (54)
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Similar to the derivation of the eigenstate vectors we expand the characteristic functions
in cylindrical harmonics and determine the solution in z-direction:

ψnm =
{

α(D)eknmz + β(D)e−knmz z ∈ D
β(vac)e−knmz z ∈ S ∪ P .

(55)

The characteristic functions have to fulfill the following transition conditions:

ψ(D)
nm (d) = ψ(vac)

nm (d) , εD
∂

∂z
ψ(D)
nm

∣
∣
∣
∣
d

= ∂

∂z
ψ(vac)
nm

∣
∣
∣
∣
d
. (56)

Based on these equations it is possible to determine the constants α(D) and β(D)

dependent on β(vac) = β
(k)
nm

α(D) = e−2knmd (εD − 1)
2εD

β(k)
nm ,

β(D) = εD + 1
2εD

β(k)
nm . (57)

The general excitation vector can then be determined to

|ek〉 =
∑

n,m

(

0 , 0 , ε0ω
2
peβ

(k)
nmknme−knmz

[ ��nmi − �Znm
])

. (58)

The remaining coefficient β(k)
nm can be calculated by the boundary conditionψ

(k)
nm(0) = δkk′

at the electrodes Ek . Applying the orthogonality relation of the Bessel functions we find

β(1)
nm=

iεD (RSNZ)2
(
knmRS−2

)m
((−1)m− 1) �(m2 ) 1F 2

(

m
2 + 1; m2 + 2,m + 1; −R2Sk

2
nm

4

)

2
[

(εD − 1)e−2knmd + εD+1
] ,

(59)

β(2)
nm = (−1)mβ(1)

nm , (60)

for the pMRP. Here 1F 2 (a; {b1, b2}; z) is the generalized hypergeometric function and
�(z) the gamma function.

Appendix F: matrix elements of the operators TC and TD
Due to the fact, that |znm〉 are the eigenstate vectors of the conservative operator TC , its
matrix elements can be calculated as

〈zn′m′ | TC |znm〉 = iωnmδnn′δmm′ . (61)

The dissipative operator applied to an eigenstate vector is given by

TD |znm〉 =
(

0 , 0 , − νε0ω2
pe

NZωnm

[

��nmknmφ(P)
nm + �Znmi

dφ(P)
nm
dz

])

(62)

and leads to

〈znm|TD|zn′m′ 〉 = −
ν
(

ε0ω2
pe

)2

N2
Zωn′m′ωnm

∞∫

d+δ

1
ε0ω2

pe

[

kn′m′knmφ
(P)

n′m′φ(P)
nm + dφ(P)

n′m′
dz

dφ(P)
nm
dz

]

dz δnn′δmm′

= −νε0ω2
peB

(P)2
nm knm

2N2
Zω2

nm
e−2knm(d+δ) = −ν

4
= νnm .

(63)
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