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Introduction
The analysis and quantification of fluid transport and mixing in chemical reactors is of great interest in order to avoid dead zones and to control heterogeneities in concentration 
distributions. From a Lagrangian perspective, coherent flow structures play a central role in this context. In the past few years, different computational methods have been developed to 
identify such finite-time coherent sets directly from trajectories of fluid particles. Such type of trajectory data is obtained via numerical simulations or lab experiments (e.g. by time-
resolved particle tracking (4D-PTV) or by Lagrangian sensors).

In this contribution, we demonstrate the application of different trajectory-based approaches for the identification of coherent flow structures in stirred tank reactors. For this purpose, 
several recently proposed methods, such as spectral clustering of trajectories [1,2] or single-trajectory diagnostics [3] have been implemented in Python to improve performance and 
facilitate embedding.

Visual discoveries within 
trajectory data
Visualization is crucial to gain a better 
understanding of the flow behavior.

By highlighting trajectories with particularly 
large modulus of the velocities
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Fig. 6: Angular velocity visualized in trajectory data.

Outlook
Numerical simulations usually provide complete and clean data, but experimental data 
are often subject to perturbations and missing records.

In case of optical recordings, shadows or suboptimal lightning can result in missing and 
thus sparse trajectory data.

As an outlook, to fill the gaps of missing trajectories appropriately, methods such as 
fitting interpolations or machine learning need to be further explored and utilized. 

Our overarching goal is to identify coherent structures in real time from sparse 
observations in chemical reactors.

which encodes the spatiotemporal distances between tracer trajectories. QT serves as an 
input for a standard spectral clustering method [5], combined with classification based 
on a sparse eigenbasis approach (SEBA) [2]. The resulting clusters correspond to 
coherent compartments in the stirred tank reactor (see Fig. 2 for visualization).

Transition probabilities between compartments can be represented in a Markov Chain 
graph (Fig. 3) to study and quantify an approximate material transfer. 

Fig. 2: Five compartments are determined via spectral 
clustering, which are colored accordingly.
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Fig. 3: A Markov Chain representation of the 
compartments in Fig.2. The 6th compartment 
corresponds to the incoherent background.
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Trajectory data
For our studies, we use trajectory data 
from a Lattice-Boltzmann simulation of a 
2.8L stirred tank reactor [4] (Fig. 1).

In the following, we assume to be given N 
tracer trajectories (xi (t)) with i = 1,…,N 
and t  T∈ . xi (t) represents the position of 
the i-th tracer at time t.

The set T = {t0,…,tT} contains all discrete 
time instances of the simulation.

Coherent structures
The following trajectory data is based on 
three rotations of the turbines. The data 
driven computation of coherent structures, 
dynamic regions that do not mix well with 
the surrounding fluid, relies on weighted 
distance matrices [1]. For each time slice 
t, we compute the instantaneous kernel 
matrix K(t) with entries

where rε is a cut-off and ε is a scaling parameter. The stochastic transition matrix P(t) is 
obtained from K(t) by row-normalization.

Finally, we form the time averaged matrix

We assume that these vortices might be 
partly responsible for a faster mass transfer 
between compartments. They might also 
influence the shape-changing behavior of 
all the compartments. This is subject to 
ongoing research.

Fig. 1: Geometry of the simulated 2.8L stirred tank 
reactor with two turbines (green) and three baffles 
(blue). Fluid: Water 20° Celcius.
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we already observe vortex-like structures, 
which appear to connect coherent 
compartments (Fig. 4). This becomes even 
more clear when considering the absolute 
acceleration (Fig. 5).

Finally, we use a recently proposed single 
trajectory diagnostics, the total rotation 
angle (TRA) [3] (Fig. 6):

Fig. 4: Velocity visualized in trajectory data

Fig. 5: Acceleration visualized in trajectory data.
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