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Moving beyond abundance distributions:
neutral theory and spatial patterns in a
tropical forest

Felix May, Andreas Huth and Thorsten Wiegand

Department of Ecological Modelling, Helmholtz-Centre for Environmental Research—UFZ, Permoserstraße 15,
Leipzig 04318, Germany

Assessing the relative importance of different processes that determine the

spatial distribution of species and the dynamics in highly diverse plant com-

munities remains a challenging question in ecology. Previous modelling

approaches often focused on single aggregated forest diversity patterns

that convey limited information on the underlying dynamic processes.

Here, we use recent advances in inference for stochastic simulation models

to evaluate the ability of a spatially explicit and spatially continuous neutral

model to quantitatively predict six spatial and non-spatial patterns observed

at the 50 ha tropical forest plot on Barro Colorado Island, Panama. The

patterns capture different aspects of forest dynamics and biodiversity struc-

ture, such as annual mortality rate, species richness, species abundance

distribution, beta-diversity and the species–area relationship (SAR). The

model correctly predicted each pattern independently and up to five pat-

terns simultaneously. However, the model was unable to match the SAR

and beta-diversity simultaneously. Our study moves previous theory

towards a dynamic spatial theory of biodiversity and demonstrates the

value of spatial data to identify ecological processes. This opens up new ave-

nues to evaluate the consequences of additional process for community

assembly and dynamics.

1. Introduction
A fundamental goal of ecology is to understand the mechanisms that determine

the spatial distribution of species and the dynamics of communities [1,2]. Plant

diversity of wet tropical forests has been especially challenging for species co-

existence theories [3] and their complexity has so far hindered a comprehensive

understanding of the relative importance of the processes that govern the spatial

structure, the composition and dynamics of these systems [4,5].

While classical coexistence theories have focused on niche differences among

species [6], neutral theory has used the opposite starting point and assumes that

all species share equal per capita fitness [7]. The neutral model introduced by

Hubbell [7] is not spatially explicit, i.e. the positions of individuals are not speci-

fied and, therefore, this model can only provide non-spatial predictions. A series

of key studies of neutral theory focused on explaining one fundamental diversity

pattern: the species abundance distribution (SAD), e.g. [8,9]. Neutral theory

initiated a controversial debate in community ecology, and it has been ardently

discussed if neutral models provide a better fit to observed SADs than previous

(statistical) models [8,10,11]. However, due to this restricted focus on SADs, the

debate has not resulted in clear progress but rather highlighted the fundamental

challenge of equifinality, which means that several contrasting models, including

neutral as well as niche-based approaches, can fit patterns such as the SAD

equally well [9,12].

More recent neutral models were spatially explicit, i.e. each individual was

characterized by its position in space [13–15]. Applications of these models
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demonstrated that neutral theory is also able to reproduce

realistic beta-diversity patterns [16] and realistic species–area

relationships (SARs) [14]. However, focusing on single biodiver-

sity patterns is unlikely to move community ecology forward,

because a single pattern provides only limited information

and thus little power to discriminate between contrasting

models and theories [12,17]. Instead, there is a need for simul-

taneous comparisons of a wide array of predictions of a

theory with field observations, as outlined by the concepts of

strong inference [18] or pattern-oriented modelling [19,20].

To overcome this obstacle, we here apply a general frame-

work of model–data integration to advance our understanding

of the dynamics of species-rich plant communities at local spatial

scales. More formally, our approach involves comparisons of

model predictions and field observations using data aggrega-

tions that quantify key forest attributes, such as the SAD or the

SAR. They are also called ‘patterns’ within the framework of

‘pattern-oriented modelling’ [20] and are known as ‘summary

statistics’ in the framework of approximate Bayesian compu-

tation [21,22]. To avoid the problem of equifinality, our

approach uses multiple patterns and we require the model to

correctly predict several of the observed patterns simultaneously

[20]. Each pattern can be considered as a ‘filter’ that helps to

identify unrealistic parameter sets or model structures [23].

We argue here that suitable diversity patterns are provided

by the spatially explicit positions of individual trees in a forest.

Such information is now provided by forest dynamics plots,

where the sizes and locations of all trees are monitored and cen-

sused every 5 years at plots of up to 50 ha [24]. Confronting

dynamic models with spatial patterns observed in plant com-

munities is also a logical next step as most mechanisms

suggested to promote coexistence in species-rich communities

are assumed to have a strong spatial component [25]. Studies

that analysed forest structure with spatial point-pattern stat-

istics [26] provided new insights into the spatial structure of

forest communities [27–31]. However, detailed spatial data

have been rarely used for the parametrization and validation

of dynamic, process-based simulation models, but see e.g. [32].

In order to link spatially explicit field observations with

model predictions, we require a spatially explicit model of

community dynamics that produces output data of the same

structure as the census data of the forest dynamics plots. To

closely tie such a model to existing theory, we developed and

analysed a novel spatially explicit extension of the neutral

model of Hubbell [7], called CONFETTI. In contrast to pre-

vious spatially explicit neutral models that were usually

implemented on a two-dimensional regular lattice, where

each individual occupies one discrete grid cell, e.g. [13,15], in

our model each individual in the local community has an expli-

cit location in continuous space [33]. This allows for a more

detailed representation of local competition and facilitates a

direct comparison of model predictions with the data of

forest plots. Recent advances in statistical inference for stochas-

tic simulation models [21,22] allow now for rigorous model

parametrization of stochastic simulation models based on

multiple observed patterns.

In this study, we confront predictions of our spatial neu-

tral model with data from the 50 ha forest plot at Barro

Colorado Island (BCI), Panama. For this purpose, we calcu-

late several non-spatial and spatial summary statistics of the

BCI plot, each of which capture a different key aspect of

forest dynamics and spatial biodiversity structure. The pat-

terns include the mortality rate, the species richness (SR),

the SAD (non-spatial patterns), and the pair-correlation func-

tion, the SAR and beta-diversity (spatial patterns). We use

the model and data to answer the following specific ques-

tions: (i) can our spatially explicit neutral model provide

realistic predictions for each pattern independently? (ii) Can

several patterns be predicted at the same time, i.e. with the

same parameter set, with the neutral model? If yes, which

ones? (iii) How do the answers to (i) and (ii) depend on the

uncertainty assigned to each pattern?

We show that the neutral model is able to fit each pattern

individually with a precision similar to the observed variation

during the 20-year census period; that the model correctly

reproduces several non-spatial and spatial patterns at the

same time; but that it is unable to predict the SAR and beta-

diversity simultaneously. This suggests that these two patterns

convey important information on the underlying dynamic pro-

cesses. The framework for model–data integration presented

here provides new avenues for assessing the roles of additional

processes, e.g. negative conspecific density, on community

assembly and dynamics.

2. Material and methods
(a) Study area
The tropical forest at Barro Colorado Island (BCI), Panama (98100

N, 798510 W) is a seasonally moist tropical forest that hosts more

than 300 tree and shrub species. Rainfall averages 2600 mm per

year, with a pronounced dry season. Investigations were carried

out within the 50 ha forest dynamics plot, which consists of

mainly old growth lowland moist forest. Elevation ranges from

120 to 155 m.a.s.l. The plot was established in 1982 and all trees

with diameter at breast height (dbh) �1 cm have been mapped,

tagged and measured every 5 years since 1985 [24,34,35].

(b) The spatial neutral model
To closely tie our approach to existing theory and to spatial data from

forest plots, we developed a spatially explicit extension of the

spatially implicit neutral model of Hubbell [7] called CONFETTI.

Our model differs from previous grid-based neutral models

[13–15] in two important ways. First, we maintained the distinction

between a metacommunity and a local community introduced by

Hubbell [7] and second, the model is spatially continuous. Owing

to this novel model design, our model predictions are directly com-

parable with predictions of the classical spatially implicit neutral

model and allow a direct comparison with spatially continuous

forest census data using point-pattern analysis.

The model CONFETTI simulates stochastic survival, mor-

tality, recruitment and immigration of all adult trees in the local

community following the assumptions of per capita neutrality

and of zero-sum dynamics. In the following, we provide a brief

introduction of the model, while a complete model description is

provided in the electronic supplementary material, appendix S1

and figure S1.

In the model, each tree is characterized by its location in space

and its species identity. We simulated 21 100 tree individuals in a

spatial arena of 50 ha (1000 � 500 m). This number of trees corre-

sponds to the average number of trees with dbh � 10 cm in the

50 ha BCI plot. Competition among trees is modelled based on

the zone-of-influence (ZOI) approach [36], where trees interact

with other trees only within a circular ZOI around their central

point. To guarantee per capita neutrality, all trees are assumed to

have the same ZOI radius (rt). The survival probability of a tree

decreases with the competition experienced by that tree. The com-

petition process in the model requires three parameters: the ZOI
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radius (rt), the survival probability in the absence of competition

(bs) and the competition pressure that reduces survival probability

by 50% (as).

Newly recruited trees can either be offspring of trees in the

local community or immigrants from the metacommunity [7].

For local recruitment, we randomly select a mother tree and

determine the location of the new recruit based on a log-

normal distance kernel [37]. The two parameters of the dispersal

kernel are the mean dm and the standard deviation dsd of the

distance between mother tree and offspring.

Immigration from the metacommunity takes place with prob-

ability m (immigration rate) [7]. However, the immigration rate

is not an independent parameter, but we link the immigration

rate to the mean recruitment distance as suggested by [38]:

m ¼ Pdm/(pA), where P is the perimeter of the plot (3000 m),

dm is the mean distance between mother tree and offspring and

A is the plot area (50 ha).

The non-spatial metacommunity is simulated based on a

sequential construction scheme [39], where the abundance distri-

butions and thus the diversity of the metacommunity is

determined by the fundamental biodiversity number u, which

is defined as u ¼ 2JMn, where JM is the number of individuals

in the metacommunity and n is the speciation rate by point

mutation [7]. The model CONFETTI is implemented in Cþþ
and the code is available from the authors upon request.

3. Linking model and data
(a) Sampling of model parameters
In order to assess the ability of the model to approximate

the field observations of the BCI plot, we randomly created

2 000 000 parameter sets based on uniform priors from

biologically plausible parameter ranges (electronic supple-

mentary material, table S1). With each parameter set, we

simulated forest dynamics for 100 generations (ca 5000

years) which was sufficient to reach a dynamic equilibrium

(electronic supplementary material figure, S2). From each

BCI census and the last step of each model simulation,

we then calculated several summary statistics to quantify

non-spatial and spatial patterns in an analogous way.

(b) Non-spatial and spatial patterns
As non-spatial patterns we used the annual mortality rate

(mort) [40], the SR and the SAD [7,8]. As summary statistics

of spatial structure, we estimated the pair-correlation function

of all trees g(r), the proportion of conspecific neighbours F(r)

at distance r and the species–area relationship SAR(r). These

three patterns were selected to represent contrasting aspects

of spatial forest structure.

The pair-correlation function g(r) is the expected density

of trees within distance r of a randomly selected tree, divided

by the overall density l of trees in the plot and quantifies the

aggregation of all large trees irrespective of species identity

[26]. Values of g(r) , 1 indicate hyper-dispersion at distance

r and values of g(r) . 1 aggregation.

As a measure of beta-diversity, we used the proportion of

conspecific neighbours F(r), which quantifies species mingling

versus intraspecific aggregation. F(r) estimates the probability

that two randomly chosen trees at distance r belong to the

same species [16]. For independent and completely random

species patterns we find F(r) ¼ 1 2 D, where D is the classical

Simpson diversity index. Values of F(r) .. 1 2 D indicate

strong intraspecific aggregation, whereas F(r) , 1 2 D

indicates species mingling [16,26]. The function F(r) is also

known as distance decay of community similarity [41].

Within the point-pattern framework, the SAR quantifies

the expected number of species within a circular area A ¼ pr2

with radius r [26, §3.1.5.2]. Both, F(r) and SAR(r) consider the

position and species identity of all trees. However, the

SAR(r) is much more influenced by rare species, while F(r) is

largely dominated by the most abundant species [41].

We estimated the six summary statistics from the five BCI

censuses between 1985 and 2005 using all living trees with

dbh . 10 cm, as neutral theory only applies to adult trees

[7]. Finally, we averaged the six summary statistics over the

five censuses or the four inter-census periods, respectively.

In the model simulations, we derived the summary stat-

istics from the tree community at the end of the simulation

run after 100 tree generations. All spatial summary statistics

were estimated for distances of 1–50 m, which includes the

spatial scales where trees are assumed to compete for light

and resources [42], and the typical scales of seed dispersal

in BCI [43].

(c) Comparison between simulated and observed
summary statistics

For each parameter set p, we quantified the deviation

between simulated (Ssim) and observed summary statistics

(Sobs) by calculating the mean relative deviation mRDi( p)

for each summary statistic i [21]

mRDi(Ssim(i, x, p), Sobs(i, x)) ¼ 1

ni

Xni

x¼1

Ssim(i, x, p)� Sobs(i, x)

Sobs(i, x)

����

����,

(3:1)

where Sobs(i, x) is the average summary statistic i derived from

the five BCI censuses, and the index x specifies the abundance

class in the SADs or the radius r for the three spatial patterns.

For the scalar summary statistics mortality rate and SR, we

have ni ¼ 1, and we evaluated the three summary statistics of

the spatial patterns at the distances r ¼ 1, 2, 5, 10, 20 and

50 m (i.e. ni ¼ 6). A value mRDi( p) ¼ 0 indicates perfect

model–data fit, while increasing values indicate a decreasing

goodness-of-fit [21].

(d) Considering uncertainty in the observed data
To define the match versus mismatch of model predictions

and data, we have to take the inherent variability of the

data into account. To this end, we defined for each summary

statistic i, a threshold for the deviation measure mRDi that

reflects the variability in the corresponding observed pattern.

We used the repeated censuses of the BCI plot to define a

baseline level of uncertainty e i in pattern i, which represents

the observed variation during the 20-year census period. We

defined e i as the average mRDi between the observed sum-

mary statistics for each single census and the average

summary statistics over all censuses (table 1).

The variation between the BCI censuses includes only tem-

poral variation, but in a statistical sense this variation occurs

within the same ‘realization’ of the forest community dynamics.

By contrast, model simulations—even with the same parameter

set—represent completely independent realizations of commu-

nity dynamics. Accordingly, a fair comparison between model

and data requires taking into account the—unfortunately

unknown—total uncertainty in observed forest patterns.
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To allow for larger levels of uncertainty, we introduce a toler-

ance factor f that describes how much larger the level of

uncertainty in the summary statistics would be relative to the

minimal uncertainty described by e i. Thus, for mean relative

deviations mRDi , f � e i, we accept the parameter set p for pat-

tern i because in this case the observed and simulated patterns

cannot be distinguished given the assigned level f of uncertainty

(table 1).

(e) Model parametrization
We applied a rejection sampling approach to select parameter

sets that produced agreement between model simulations and

field observations [22,23]. Specifically, we applied the selection

criterion mRDi( p) , min( f � e i, 0.2) to accept a parameter set

only if the predicted mean relative deviation for summary stat-

istic i was smaller than the uncertainty in the observed

summary statistic (e i) multiplied with tolerance factor f.
To answer our first question (i.e. whether neutral dynamics

provide realistic predictions for each pattern independently),

we applied the rejection sampling approach for each summary

statistic independently and set f ¼ 1, which means the model

predictions had to match observations at the uncertainty

level of the data. To answer our second and third question

(i.e. whether our simple model can predict several patterns

simultaneously and how this depends on the level of uncer-

tainty), we considered all 63 possible combinations of

patterns and varied the tolerance factor f (table 1). For each of

these combinations we count the number of parameter sets

that fulfil the rejection criterion and estimate the approximate

posterior distribution of each parameter. To exclude parameter

sets with poor match, we always limit f � e i , 0.2, thus

we expect in any case that simulated and observed summary

statistics deviate on maximum by 20%.

4. Results
(a) Predictions of single patterns
We found that our model is able to match each single pattern

independently (figure 1). The number of accepted parameter

sets, which provides a measure of the information contents of

the respective pattern [19], varies largely among the six pat-

terns. While the two scalar patterns—mortality rate and

SR—can be fitted by a high proportion of the parameter

sets, fits of the abundance distribution (SAD) or the spatial

patterns [g(r), SAR(r), F(r)] were only possible with a limited

number of parameter sets (figure 1).

Each pattern restricted the posterior parameter ranges in a

different way, i.e. different patterns were informative on differ-

ent processes and parameters. Fitting the SR or the SAD

primarily restricted the fundamental biodiversity number u

of the metacommunity (figure 1b,c). Considering the spatial

patterns, the pair-correlation function g(r) restricted the ZOI

radius rt (figure. 1d ), while both, the SAR(r) and beta-diversity

F(r) restricted u, the mean and the standard deviation of the

recruitment distance dm and dsd (figure 1e and f ).

The question remains, whether patterns that constrain the

same parameters result in compatible or in contrasting par-

ameter estimates. For example, the range of u required to fit

the SAD: u ¼ 44.3–51.9 (25–75% quantile) was compatible

with the range that fits the SR: u ¼ 45.8–55.8 (figure 1b,c).

By contrast, fitting the SAR required higher values of u ¼

74.2–88.0 (figure 1e), while fits of beta-diversity required

low values of u ¼ 22.4–30.8 (figure 1f ). Notably, the par-

ameter ranges that produce good fits of the SAR and the

beta-diversity agree for the recruitment kernel parameters

(i.e. dm and dsd), but are clearly incompatible for u (figure

1e and f ). This indicates that it might be impossible to fit

the SAD, the SAR(r) and F(r) with the current model simul-

taneously, however, this may only be the case on the lowest

level of uncertainty (i.e. f ¼ 1).

(b) Simultaneous match of several patterns
From the definition of the six patterns used here, we could dis-

tinguish summary statistics that depend on the species identity

of trees [SR, SAD, F(r), SAR(r)] and others that do not [mort,

g(r)]. As competition and survival are modelled independently

of species identities, we expect that the model parameters

related to competition and survival (rt, as, bs) should prima-

rily influence the summary statistics mortality rate and the

pair-correlation function g(r). Indeed, at the tolerance level of

f ¼ 2, we found that filtering the simulation results with

mortality and g(r) strongly constrained the range of the ZOI

radius (rt) and the survival parameters (as,bs) (electronic

supplementary material, figure S3).

An interesting question is, if the joint information contained

in the three non-spatial patterns is also able to constrain the

spatial patterns. At the tolerance level of f ¼ 2, we found 2375

parameter sets which correctly predicted the three non-spatial

patterns (mort, SR and SAD) at the same time (electronic sup-

plementary material, figure S4a–c). However, the information

in the non-spatial patterns was clearly not sufficient to con-

strain the parameter space to predict reasonable spatial

patterns (electronic supplementary material, figure S4e,f,g).

Table 1. Selection thresholds for all summary statistics used in the rejection sampling approach. The values of e i were calculated for each summary statistics as
the average mean relative deviation equation (3.1) between the five BCI censuses (1985 – 2005) and the average summary statistics of these censuses. For each
value of f, all possible 63 combinations out of the six summary statistics were used to select simulation results that match the observations at the respective
error level. mort, annual mortality rate of trees (dbh �10 cm); SR, species richness at 50 ha; SAD, species abundance distribution; g(r), pair-correlation function;
F(r), proportion of conspecific neighbours (beta-diversity); SAR(r), species – area relationship.

mort SR SAD g(r) F(r) SAR(r)

min (f � e i, 0.2), with f ¼ 1 0.068 0.013 0.089 0.007 0.029 0.012

min (f � e i, 0.2), with f ¼ 2 0.136 0.026 0.178 0.014 0.058 0.024

min (f � e i, 0.2), with f ¼ 5 0.200 0.065 0.200 0.035 0.145 0.060

min (f � e i, 0.2), with f ¼ 10 0.200 0.130 0.200 0.070 0.200 0.120
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When requiring simultaneous fit of all patterns except

beta-diversity, we found 42 parameter sets at the tolerance

level of f ¼ 5 that yielded simultaneous realistic predictions

(figure 2). All posterior parameter ranges were now relatively

narrow, especially for as, dm and u (figure 2f ). However, in

this case the predicted beta-diversity was generally too low,

especially at larger distances r (figure 2g), which means the

model predicted lower aggregation and higher mingling of

species than observed in BCI.

Only at the highest tolerance level investigated here ( f ¼ 10),

the model predictions matched all six patterns simultaneously

(electronic supplementary material, figure S5). However, in

this case there was a clear underestimation of the SAR at large

spatial scales (electronic supplementary material, figure S5e).

5. Discussion
Our findings advance the debate about neutral theory by

confronting a spatially explicit and spatially continuous

neutral model with a comprehensive set of spatial and non-

spatial forest attributes derived from census data of a tropical

forest. Such an approach was impossible a few years ago, but

recent advances in individual-based modelling [44], statistical

inference for stochastic simulation models [21,22] and high

performance computing allowed now for this new and

refreshing approach on neutral theory in particular and

plant community dynamics in general.

We found that our spatially explicit extension of the clas-

sical neutral model was able to fit all patterns individually

with a precision at the level of uncertainty inherent to the

data. We also found that the model could fit up to five of

the six selected patterns simultaneously on a relatively

narrow level of tolerated uncertainty. This means that

already a simple model incorporates enough mechanisms to

correctly predict several fundamental patterns of the diverse

BCI forest. However, the failure of simple models can be

informative, because mismatch between model predictions

and field observations provides the basis for the subsequent

identification of important ecological processes [19,20,45].

The failure of the spatially explicit neutral model to simul-

taneously predict the observed SAR and the beta-diversity

(distance decay of similarity) suggests that these two pat-

terns, when considered simultaneously, contain important

information on the underlying ecological processes [41].

The neutral model underestimated the distance decay when

fitting the other patterns well (figure 2g). It has been shown

before that abundant species have the strongest influence
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on the distance decay [41]. Therefore, the mismatch between

observed and modelled beta-diversity might indicate that

the model underestimates the aggregation of abundant species

and/or overestimates the co-occurrence of abundant species. In

‘The role of additional processes for tropical forest dynamics’,

we suggest additional processes, such as species-specific

dispersal and habitat associations, which are potentially

important to predict both spatial patterns simultaneously.

Thus, our understanding of forest dynamics can be improved

by testing whether the extended models discussed below can

fit an extended set of biodiversity patterns together.

(a) Parameter estimates and model predictions
When we used only the SAD for parameter estimation,

we obtained posterior parameter ranges for the fundamen-

tal biodiversity number u and the immigration rate m that are

in good agreement with previous fits based on the spa-

tially implicit neutral model (u � 47–50, m � 0.1–0.13)

[8,11]. Note that the immigration rate was not indepen-

dent, but defined by the mean recruitment distance (dm) as

m¼ P � dm/(p � A) [38]. Thus, our spatially explicit neutral

model agrees with the predictions of the spatially implicit

model if we disregard its spatial output. This result is an

important proof of concept for our model.

It is encouraging that our estimates for the mean recruit-

ment distance (dm) were relatively similar to previous

estimates based on seed trap data [16,43]. This is remarkable

because the recruitment of adult trees in our model essen-

tially integrates the processes of seed dispersal, seedling

establishment, sapling growth and survival to adulthood

into an effective recruitment distance. The similarity of our

estimates for the mean recruitment distance with direct esti-

mates of mean dispersal distances is reassuring and shows

that our aggregated model captured the key process of

dispersal limitation in a reasonable way.

(b) The links between patterns and processes
We found that different patterns constrained distinct par-

ameters, which indicates that there are specific links between

patterns and processes. Specifically, patterns that did not

depend on species identities—mortality and pair-correlation

function—primarily constrained the parameters that describe

competition. By contrast, the summary statistics that represent

biodiversity patterns—SAD, SAR(r), F(r)—constrained the

fundamental biodiversity number, as well as the recruitment

kernel parameters. This clear distinction depends on the fact

that in the neutral model competition does not depend on

species identity and local species diversity. As soon as

non-neutral differences among species are considered, this dis-

tinction between diversity independent and dependent

patterns would be likely to break down.

The three spatial statistics used here are by no means exhaus-

tive of the range of potential summary statistics provided by

point-pattern analysis [26]. For example, the uni- and bivariate

distribution patterns of species and species pairs [e.g. 27,28,46],

and relationships between individual species and local SR [29]

could be studied in future work. These summary statistics may

prove informative of additional ecological processes.

(c) The role of additional processes for tropical forest
dynamics

Numerous studies have found strong evidence for non-neutral

processes in tropical forests [4,47], albeit often for seedlings and

saplings, which were purposefully excluded from the neutral

model. However, while these analyses could document the

occurrence of a mechanism, they cannot usually assess its rela-

tive importance for community dynamics and spatial

structure, but see e.g. [48,49]. Statistical significance does not

necessarily imply that the effect also has a major impact on

the dynamics of the system [5]. The model–data integration

approach presented here allows an assessment of the relative

importance of ecological processes on key biodiversity pat-

terns. While we limited our analysis here to neutral processes

and found that the model cannot correctly predict the distance

decay of similarity together with the other patterns, our model

can be expanded to include species differences in a number of

processes (i.e. including non-neutral processes) to identify the

cause of this failure.
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For example, spatially limited recruitment causes the

aggregation of conspecific individuals in our model. Previous

studies indicated that conspecific aggregation is a common

pattern [27], and also that the degree of aggregation varies

considerably among species [41,50]. These interspecific differ-

ences in conspecific aggregation can potentially resolve the

incompatibilities in the simultaneous predictions of spatial

diversity patterns. The most likely mechanism generating

these differences in aggregation are species-specific differ-

ences in dispersal distances, due to different seed or fruit

morphologies and different dispersal vectors [43,51].

Another process that has been often advocated to be an

important driver of species diversity is negative conspecific

density dependence (NDD), e.g. due to Janzen–Connell

effects [4]. For tropical forests there is evidence that NDD

plays an important role at the seedling stage [47,48,52], but

there has been less support for NDD at the stage of adult

trees [30,42]. Theoretical studies showed that there are clear

differences in the spatial patterns predicted by neutral

models compared with models incorporating negative con-

specific density dependence [13,33], however, these models

have not yet been linked to field observations.

Previous work found significant associations of species

distributions to environmental covariates, such as terrain

slope, elevation and soil nutrients at the spatial scales con-

sidered here, e.g. [53–55]. Other studies cast doubts on

whether these habitat associations translate into substantial

improvement in predicting spatial patterns [56]. However,

habitat associations have a strong potential to constrain

species distributions and thus also to influence the shape of

spatial biodiversity patterns.

The three processes of interspecific variability in recruit-

ment distances, negative density dependence and habitat

associations can in principle be incorporated into the pre-

sented framework. Assessing the consequences of these

processes is however beyond the scope of this paper

and applying the approach presented here to investigate

the implications of these additional processes will be

computationally demanding.

6. Conclusion
Our study shows that the parametrization of spatial models

of community dynamics requires the simultaneous use of

different observed biodiversity patterns. Spatial data of

fully mapped plots in particular can provide the additional

information needed to distinguish among competing

models that was missed in earlier approaches.

Fitting a spatially explicit extension of the classical neutral

model to spatial data reveals why the debate around neutral

models to data has not resulted in much progress. The neutral

model is able to fit individual biodiversity patterns, such as

the SAD and the SAR, with a precision at the level of the

observed inter-census variability. We argue that progress in

identifying important processes can only be achieved by

assessing the simultaneous fit of several biodiversity patterns.

Recent advances in inference for stochastic simulation models

and the information in large fully mapped forest plots pro-

vide the methods as well as the data for implementing this

research agenda.

Data accessibility. The census data for the BCI plot are publicly available
at the website of the Center for Tropical Forest Science: http://ctfs.
arnarb.harvard.edu/webatlas/datasets/bci/. Any use of the data
has been agreed upon with the principal investigators of the BCI
plot: Stephen Hubbell, Richard Condit and Robin Foster.

Acknowledgements. We thank James Rosindell, Marcus Eichhorn and one
anonymous reviewer for helpful comments on the manuscript. The
BCI forest dynamics research project was founded by S. P. Hubbell
and R. B. Foster and is now managed by R. Condit, S. Lao, and R.
Perez under the Center for Tropical Forest Science and the Smithso-
nian Tropical Research in Panama. Numerous organizations have
provided funding, principally the U.S. National Science Foundation,
and hundreds of field workers have contributed.

Authors contributions. F.M., A.H. and T.W. conceived of the study. F.M.
implemented and analysed the simulation model and the field
data. F.M. wrote the first draft of the manuscript. All authors signifi-
cantly contributed on the text of the final manuscript version and
gave final approval for publication.

Funding statement. F.M. was supported by the European Research Council
(ERC) advanced grant 233066 to T.W.

Conflict of interests. We have no competing interests.

References

1. Ricklefs RE, Miller GL. 1999 Ecology. New York, NY:
W. H. Freeman and Company.

2. Brown JH, Mehlman DW, Stevens GC. 1995 Spatial
variation in abundance. Ecology 76, 2028 – 2043.
(doi:10.2307/1941678)

3. Wilson JB, Peet RK, Dengler J, Pärtel M. 2012 Plant
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