Professorship for Sustainable Chemistry and Material Resources

Organisational unit: Section

Organisation profile

RESEARCH AND TEACHING

Chair for Sustainable Chemistry and Material Resources

We research and train in the field of sustainable chemistry and pharmacy.

We focus on environmental questions as well as on sustainable questions going beyond that such as social and ecological aspects in the context of the life cycle of chemical substances and products. This includes the extraction of raw material, its use as well as the fate after its use. We are also interested in the material flow associated with the extraction and use of the raw material. On top of the experimental work and modeling, we also develop concepts as for example Benign by Design intended dissipation.

Our research and teaching is carried out on an intra- and transdisciplinary scale within the Faculty of Sustainability together with national and international co-operations.

 

Topics

We are interested in environmental affairs and all questions concerning the sustainability within the context of the life cycle of chemicals, starting with the raw material itself and going on to the synthesis, the use to end up with the environmental fate of chemical substances and products after their use. Beyond the chemical substances and products themselves, we are also interested in the associated material flows, especially when it comes to the so-called strategic resources (e. g. phosphate, seldom metals).

We investigate the fate (e. g. identification of relevant sources) in the environment as well as the spread and the behavior of chemicals (e. g. spread, biological and photochemical degradation) in the aquatic environment in the sense of a sustainable water management. This is why we want to record their effects (e. g. genotoxicity, mutagenity, and bacteria toxicity).At present we are focusing on pesticides, pharmaceuticals, textile auxiliary agents and nanoparticles.

Service offers

Examination of (bio)-degradability of chemicals and pharmaceuticals  
according to OECD/DIN/ISO and others:
 
•    
Closed Bottle-Test (OECD 301 D)
•    Manometric Respirometry (OECD 301 F)
•    Zahn-Wellens-Test (OECD 302 B)
•    Waste water treatment plant simulation (OECD 303 A)
•    Water Sediment Test
•    Photochemical degradation
•    Photocatalytic degradation
•    Electro coalugation
•    and other
 
Toxicity
Acute and chronic toxicity in bacteria:
•    Luminescent bacteria test with Vibrio fischeri (30 minutes and 20h)
•    Growth-inhibition test with Pseudomonas putida (16h) and Vibrio fischeri (20h)
•    Growth-inhibition test with Enteroccus faecalis      

Genotoxicity:
•    Ames-Test with Salmonella typhimurium TA 98/TA 100
•    Umu-Test with Salmonella typhimurium TA 1535/ psK 1002
•    Mikronucleus-Test with CHO-Cells by FACS-Analysis
•    Green Screen-Assay with TK6-cells

Chemical informatics
Structure property relationships
•    Calculation of physicochemical properties of molecules
•    Calculation of quantum chemical parameters of molecules
•    Calculation of toxicity and mutagenicity
•    Calculation of the biological degradation
•    Calculation of metabolites (mammalia bacteria)
•    Targeted design of chemicals and pharmaceuticals
•    Support in purchasing decisions
•    Product optimization
•    REACH
 
Water flux based reactive mass transport modelling and assessment
•    Spatio-temporal analysis of discharge and water quality (R-Statistics, SigmaPlot, ArcGIS)
•    Assessment of water quality by combined water quality and quantity indices (WQI, WQQI, WAI)
•    Water quality modelling in lakes and reservoirs in 1D, 2D and 3D (LAC, MOHID Water, Ce-qual)
•    Catchment modelling of hydrology, erosion and sedimenttransport, phosphorus discharge, pesticides and transformation product discharge (ZIN-Sed, MOHID Land, reservoir models)
•    River channel modelling of water, sediment, phosphorus, pesticide and transformation product discharge (ZIN-Sed, MOHID Stream)
•    Scenario modelling and assessment
•    System analysis and management assessment
•    Integrated water ressources management
   
Analytics
•    Liquid chromatography coupled to ion trap mass spectrometry
•    HPLC with UV and fluorescence detection
•    Gas chromatography coupled to mass spectrometry
•    Ion chromatography